Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 23
Compression testing
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006032
EISBN: 978-1-62708-175-7
Abstract
This article describes several factors, which help in determining the compressibility of metal powders: particle shape, density, composition, hardness, particle size, lubrication, and compacting. It discusses the uses of annealing metal powders and describes compressibility testing of the powders. The article details green strength and its mechanism and the variables affecting the strength. It also discusses two test methods for determining the green strength: the Rattler test and the transverse bend test.
Book Chapter
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005542
EISBN: 978-1-62708-197-9
Abstract
This article is a comprehensive collection of tables containing formulas for metals processing, namely, casting and solidification, flat (sheet) rolling, conical-die extrusion, wire drawing, bending, and deep drawing. Formulas for compression, tension, and torsion testing of isotropic materials are included. The article also lists the formulas for effective stress, strain, and strain rate (isotropic material) in arbitrary and principal coordinates; dimensionless groups in fluid mechanics; and anisotropic sheet materials at various loading conditions.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005181
EISBN: 978-1-62708-186-3
Abstract
This article presents formulas for calculating the following: effective stress, strain, and strain rate (isotropic material) in arbitrary coordinates and in principal coordinates; compression testing, tension testing, and torsion testing of isotropic material; and Barlat's anisotropic yield function Yld2000-2d for plane-stress deformation of sheet material. It also contains formulas related to flat (sheet) rolling, conical-die extrusion, wire drawing, bending, and deep drawing of cups from sheet metal.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009007
EISBN: 978-1-62708-185-6
Abstract
This article discusses a number of workability tests that are especially applicable to the forging process. The primary tests for workability are those for which the stress state is well known and controlled. The article provides information on the tension test, torsion test, compression test, and bend test. It examines specialized tests including plane-strain compression test, partial-width indentation test, secondary-tension test, and ring compression test. The article explains that workability is determined by two main factors: the ability to deform without fracture and the stress state and friction conditions present in the bulk deformation process. These two factors are described and brought together in an experimental workability analysis.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009008
EISBN: 978-1-62708-185-6
Abstract
A cylindrical specimen compressed with friction at the die surfaces does not remain cylindrical in shape but becomes bulged or barreled. Tensile stresses associated with the bulging surface make the upset test a candidate for workability testing. This article discusses test-specimen geometry and friction conditions; strain measurements; crack detection; and material inhomogeneities, which are to be considered for performing cold upset testing. It describes test characteristics in terms of deformation, free-surface strains, and stress states for performing cylindrical compression tests. The article illustrates the fracture loci in cylindrical, tapered, and flanged upset-test specimens of aluminum alloy and type 1045 cold-finished steel.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009009
EISBN: 978-1-62708-185-6
Abstract
This article describes the use of compression tests, namely, cylindrical compression, ring compression, and plane-strain compression tests at elevated temperatures. It discusses the effects of the temperature, strain rate, and deformation heating on metals during the cylindrical compression test, with the help of flow curves. The article illustrates the testing apparatus used in the cylindrical compression test. It describes the issues regarding friction and temperature, and strain-rate control with proper test equipment and experimental planning during the ring compression test and plane-strain compression test. The article also reviews the testing conditions, procedures, and advantages of hot plane-strain compression test.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004017
EISBN: 978-1-62708-185-6
Abstract
This article focuses on the factors that determine the extent of deformation a metal can withstand before cracking or fracture occurs. It informs that workability depends on the local conditions of stress, strain, strain rate, and temperature in combination with material factors. The article discusses the common testing techniques and process variables for workability prediction. It illustrates the simple and most widely used fracture criterion proposed by Cockcroft and Latham and provides a workability analysis using the fracture limit line. The article describes various workability tests, such as the tension test, ring compression test, plane-strain compression test, bend test, indentation test, and forgeability test. It concludes with information on the role of the finite-element modeling software used in workability analysis.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003443
EISBN: 978-1-62708-195-5
Abstract
This article provides the general mechanical testing guidelines for the characterization of lamina and laminate properties. Guidelines are provided for tensile property, compressive property, shear property, flexure property, fracture toughness, and fatigue property test methods. The article also tabulates selected standards for lamina and laminate mechanical testing.
Book Chapter
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003294
EISBN: 978-1-62708-176-4
Abstract
This article reviews high strain rate compression and tension test methods with a focus on the general principles, advantages, and limitations of each test method. The compression test methods are cam plastometer test, drop tower compression test, the Hopkinson bar in compression, and rod impact (Taylor) test. The flyer plate impact test, expanding ring test, split-Hopkinson bar in tension, and a test using a rotating wheel used for high strain rate tension are also discussed.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003290
EISBN: 978-1-62708-176-4
Abstract
This article discusses stress relaxation testing on metallic materials, as covered by ASTM E 328. It reviews the two types of stress relaxation tests performed in tension, long-term and accelerated testing. The article illustrates load characteristics and data representation for stress relaxation testing used for the most convenient and common uniaxial tensile test. It concludes with information on compression testing, bend testing, torsion testing, and tests on springs.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003265
EISBN: 978-1-62708-176-4
Abstract
Compression tests are used for subscale testing and characterizing the mechanical behavior of anisotropic materials. This article discusses the characteristics of deformation during axial compression testing, including deformation modes, compressive properties, and compression-test deformation mechanics. It describes the procedures for the use of compression testing for the measurement of the deformation and fracture properties of materials. The article provides a detailed discussion on the technique involved in determining the stress-strain behavior of metallic materials based on the ASTM E 9, "Compression Testing of Metallic Materials at Room Temperature." It also reviews the factors that influence the generation of test data for tests conducted in accordance with the ASTM E 9 and the capabilities of conventional universal testing machines for compression testing.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003322
EISBN: 978-1-62708-176-4
Abstract
Forming processes can be divided into three major categories: bulk forming, sheet-metal forming, and semisolid forming and polymer extrusion. This article introduces each process category with a description of the constitutive models. It outlines the required properties for process modeling and describes the test methods for determining these properties. The article discusses several compression tests used to determine stress-strain curves for bulk forming and tensile tests used to obtain stress-strain curves for sheet-metal forming. The article concludes with information on the measurement of viscosity of semisolid alloy materials by using three types of viscometers: the coaxial cylinder viscometer, the cone-and-plate viscometer, and the capillary viscometer.
Book Chapter
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003256
EISBN: 978-1-62708-176-4
Abstract
This article reviews the general mechanical properties and test methods commonly used for ceramics and three categories of polymers, namely, fibers, plastics, and elastomers. The mechanical test methods for determining the tensile strength, yield strength, yield point, and elongation of plastics include the short-term tensile test, the compressive strength test, the flexural strength test, and the heat deflection temperature test. The most commonly used tests for impact performance of plastics are the Izod notched-beam test, the Charpy notched-beam test, and the dart penetration test. Two basic test methods for a group or strand of fibers are the single-filament tension and tow tensile tests. Room temperature strength tests, high-temperature strength tests, and proof tests are used for testing the properties of ceramics.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003266
EISBN: 978-1-62708-176-4
Abstract
This article emphasizes short-term tension and compression testing of metals at high temperatures. It describes the effect of temperature on deformation and strain hardening, occurrence of high-temperature creep in structural alloys, and the performing of mechanical testing for high-temperature structural alloys. The article discusses hot tension testing and measurements of temperature and strain in the hot tension testing. It also provides an overview of hot compression testing.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003257
EISBN: 978-1-62708-176-4
Abstract
An integral aspect of designing and material selection is the use of mechanical properties derived from various mechanical testing. This article introduces the basic concepts of mechanical design and its relation with the properties derived from various mechanical testings, namely, tensile, compressive, hardness, torsion and bend, shear load, shock, and fatigue and creep testings. It describes the design criteria for combined properties derived from each of the mechanical testing. The article concludes with a discussion on the effect of environment on the mechanical properties.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003330
EISBN: 978-1-62708-176-4
Abstract
This article begins with a review of the purposes of mechanical characterization tests and the general considerations related to the mechanical properties of anisotropic systems, specimen fabrication, equipment and fixturing, environmental conditioning, and analysis of test results. It provides information on the specimen preparation, instrumentation, and procedures for various mechanical test methods of fiber-reinforced composites. These include the compression test, flexure test, shear test, open hole tension test, and compression after impact test. The article describes three distinct fracture modes, namely, crack opening mode, shearing mode, and tearing mode. It presents an overview of fatigue testing and fatigue damage mechanisms of composite materials and reviews the types of mechanical measurements that can be made during the course of testing to assess fatigue damage. The article concludes with a discussion on the split-Hopkinson pressure bar test.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003267
EISBN: 978-1-62708-176-4
Abstract
This article provides a discussion on the mechanical properties of metals, ceramics, and polymers and fiber-reinforced polymer composites at low temperatures. It reviews the factors to be considered in tensile and compression testing of these materials. The article details the equipment used for low-temperature tensile and compression tests with illustrations. It concludes with a discussion on the various test methods and their ASTM standard for compression and tension testing.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003258
EISBN: 978-1-62708-176-4
Abstract
An important activity in metalworking facilities is the testing of raw materials for characteristics that ensure the integrity and quality of the products made. This article reviews the common material parameters that can have a direct or indirect influence on workability and product quality. These include strength, ductility, hardness, strain-hardening exponent, strain-rate effects, temperature effects, and hydrostatic pressure effects. The article also reviews the material behavior characteristics typically determined by mechanical testing methods. It discusses various mechanical testing methods, including the tension test, plane-strain tension test, compression test, plane-strain compression test, partial-width indentation test, and torsion test. Aspects of testing particularly relevant to workability and quality control for metalworking processes are also described. Finally, the article details the various factors influencing workability in bulk deformation processes and formability in sheet-metal forming.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003259
EISBN: 978-1-62708-176-4
Abstract
The article provides an overview of the various types of testing machines: gear-driven or screw-driven machines and servohydraulic machines. It examines force application systems, force measurement, and strain measurement. The article discusses important instrument considerations and describes gripping techniques of test specimens. It analyzes test diagnostics and reviews the use of computers for gathering and reducing data. Emphasis is placed on universal testing machines with separate discussions of equipment factors for tensile testing and compressing testing. The influence of the machine stiffness on the test results is also described, along with a general assessment of test accuracy, precision, and repeatability of modern equipment.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003261
EISBN: 978-1-62708-176-4
Abstract
This article focuses on mechanical behavior of materials under conditions of uniaxial tension and compression. The emphasis is on mechanical behavior during the engineering tension test, which is used to provide basic design information on the strength of materials and as an acceptance test for the specification of materials. The article presents mathematical expressions for a flow curve of many metals in the region of uniform plastic deformation. It explains that the rate at which strain is applied to the tension specimen has an important influence on the stress-strain curve. The point of necking at maximum load can be obtained from the true stress-true strain curve by finding the point on the curve having a subtangent of unity. The article concludes with an overview of the ductility measurements performed by notch tensile and compression tests.
1