Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 22
High-speed tool steel
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006417
EISBN: 978-1-62708-192-4
Abstract
Tool steels are carbon, alloy, and high-speed steels that can be hardened and tempered to high hardness and strength values. This article discusses the classifications of commonly used tool steels: water-hardening tool steels, shock-resisting tool steels, cold-work tool steels, and hot-work tool steels. It describes four basic mechanisms of tool steel wear: abrasion, adhesion, corrosion, and contact fatigue wear. The article describes the factors to be considered in the selection of lubrication systems for tool steel applications. It also discusses the surface treatments for tool steels: carburizing, nitriding, ion or plasma nitriding, oxidation, boriding, plating, chemical vapor deposition, and physical vapor deposition. The article describes the properties of high-speed tool steels. It summarizes the important attributes required of dies and the properties of the various materials that make them suitable for particular applications. The article concludes by providing information on abrasive wear and grindability of powder metallurgy steels.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006052
EISBN: 978-1-62708-175-7
Abstract
This article discusses the methods and procedures used to extract, purify, and synthesize tungsten carbide powder, metal, and other refractory carbide/nitride powders used in hard metal production. Selection of powders, additives, equipment, and processes for making ready-to-press hard metal powders is also discussed. The article also provides information on the emerging technologies for tungsten carbide synthesis and binders in hard metal production, such as cobalt, iron, and nickel.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006130
EISBN: 978-1-62708-175-7
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006131
EISBN: 978-1-62708-175-7
Abstract
The microstructure in the longitudinal direction of conventional high-alloy tool steels (HATS) depends very much on the degree of hot working. Comparing different processes, the highest processing temperature proves to be decisive for coarseness of the microstructure. This article provides a discussion on the microstructure of conventional HATS and hot isostatically pressed high-speed steel. The effects of the processing in cold worked HATS are illustrated.
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005975
EISBN: 978-1-62708-168-9
Abstract
This article focuses on various heat treatment practices recommended for different types of high-speed tool steels. Commonly used methods include annealing, stress relieving, preheating, austenitizing, quenching, tempering, carburizing, and nitriding. The article describes hardening for various types of cutting tools, namely, broaches, chasers, milling cutters, drills, taps, reamers, form tools, and hobs, and for thread rolling dies, threading dies, and bearings.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003202
EISBN: 978-1-62708-199-3
Abstract
All tool steels are heat treated to develop specific combinations of wear resistance, resistance to deformation or breaking under loads, and resistance to softening at elevated temperature. This article describes recommended heat treating practices, such as normalizing, annealing, austenitizing, quenching, preheating, and tempering commonly employed in certain steels. These are water-hardening tool steels, shock-resisting tool steels, oil-hardening cold-work tool steels, medium-alloy air-hardening cold-work tool steels, high-carbon high-chromium cold-work tool steels, hot-work tool steels, high-speed tool steels, low-alloy special-purpose tool steels, and mold steels. The article presents tables that list the temperature ranges, holding time, and hardness values for all of these heat treating processes.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003162
EISBN: 978-1-62708-199-3
Abstract
Hardfacing is defined as the application of a wear-resistant material, in depth, to the vulnerable surfaces of a component by a weld overlay or thermal spray process Hardfacing materials include a wide variety of alloys, carbides, and combinations of these materials. Iron-base hardfacing alloys can be divided into pearlitic steels, austenitic (manganese) steels, martensitic steels, high-alloy irons, and austenitic stainless steel. The types of nonferrous hardfacing alloys include cobalt-base/carbide-type alloys, laves phase alloys, nickel-base/boride-type alloys, and bronze type alloys. Hardfacing applications for wear control vary widely, ranging from very severe abrasive wear service, such as rock crushing and pulverizing to applications to minimize metal-to-metal wear. This article discusses the types of hardfacing alloys, namely iron-base alloys, nonferrous alloys, and tungsten carbides, and their applications and advantages.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003188
EISBN: 978-1-62708-199-3
Abstract
Selecting the proper cutting tool material for a specific machining application can provide substantial advantages, including increased productivity, improved quality, and reduced costs. This article begins with a description of the factors affecting the selection of a cutting tool material. This is followed by a schematic representation of their relative application ranges in terms of machining speeds and feed rates. The article provides a detailed account of chemical compositions of various tool materials, including high-speed tool steels, cobalt-base alloys, cemented carbides, cermets, ceramics, cubic boron nitride, and polycrystalline diamond. It compares the toughness, and wear resistance for these cutting tool materials. Finally, the article explains the steps for selecting tool material grades for specific application.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001320
EISBN: 978-1-62708-170-2
Abstract
The classes of tool materials for machining operations are high-speed tool steels, carbides, cermets, ceramics, polycrystalline cubic boron nitrides, and polycrystalline diamonds. This article discusses the expanding role of surface engineering in increasing the manufacturing productivity of carbide, cermet, and ceramic cutting tool materials used in machining operations. The useful life of cutting tools may be limited by a variety of wear processes, such as crater wear, flank wear or abrasive wear, builtup edge, depth-of-cut notching, and thermal cracks. The article provides information on the applicable methods for surface engineering of cutting tools, namely, chemical vapor deposited (CVD) coatings, physical vapor deposited coatings, plasma-assisted CVD coatings, diamond coatings, and ion implantation.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001442
EISBN: 978-1-62708-173-3
Abstract
Hardfacing is a form of surfacing that is applied for the purpose of reducing wear, abrasion, impact, erosion, galling, or cavitation. This article describes the deposition of hardfacing alloys by oxyfuel welding, various arc welding methods, laser welding, and thermal spray processes. It discusses the categories of hardfacing alloy, such as build-up alloys, metal-to-metal wear alloys, metal-to-earth abrasion alloys, tungsten carbides, and nonferrous alloys. A summary of the selection guide for hardfacing alloys is presented in a table. The article describes the procedures for stainless steel weld cladding and the factors influencing joint integrity in dissimilar metal joining. It concludes with a discussion on joining carbon and low-alloy steels to various dissimilar materials (both ferrous and nonferrous) by arc welding.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001042
EISBN: 978-1-62708-161-0
Abstract
The powder metallurgy (P/M) process has been used primarily for the production of advanced high-speed tool steels. However, the P/M process is also being applied to the manufacture of improved cold-work and hot-work tool steels. The basic heat treatments for P/M high-speed tool steels include preheating, austenitizing, quenching, and tempering. This article describes manufacturing properties, cutting tool properties, and applications of P/M high-speed tool steels. It discusses the development of P/M high-speed alloy steels that cannot be made by conventional methods because of their high carbon, nitrogen, or alloy contents. For high-speed tool steels, a number of important end-user properties have been improved by powder processing; machinability, grindability, dimensional control during heat treatment, and cutting performance under difficult conditions where high edge toughness is essential. Several of these advantages also apply to P/M cold- and hot-work tool steels, which, compared to conventional tool steels, offer better toughness and ductility for cold-work tooling, better thermal fatigue life, and greater toughness for hot-work tooling.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001041
EISBN: 978-1-62708-161-0
Abstract
Tool steels are any steel used to make tools for cutting, forming, or shaping manufactured parts. Most tool steels are wrought products alloyed with relatively large amounts of tungsten, molybdenum, vanadium, manganese, and/or chromium. The article describes a wide variety of tool steels, including high-speed steels, hot and cold-work steels, shock-resisting steels, and special-purpose steels. Hot-work steels are designed to withstand excessive amounts of heat, pressure, and abrasion, suiting them for punching, shearing, and high-temperature forming applications. Cold-work tool steels have exceptional dimensional stability and wear resistance, but lack the alloy content necessary to resist softening at temperatures above 205 to 260 deg C. The article examines standard designations for all tool steel types and provides corresponding composition and property ranges. It also discusses surface treatments, fabrication issues, and in-service measures of performance.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001104
EISBN: 978-1-62708-162-7
Abstract
Cemented carbides belong to a class of hard, wear-resistant, refractory materials in which the hard carbide particles are bound together, or cemented, by a soft and ductile metal binder. The performance of cemented carbide as a cutting tool lies between that of tool steel and cermets. Almost 50% of the total production of cemented carbides is used for nonmetal cutting applications. Their properties also make them appropriate materials for structural components, including plungers, boring bars, powder compacting dies and punches, high-pressure dies and punches, and pulverizing hammers. This article discusses the manufacture, microstructure, composition, classifications, and physical and mechanical properties of cemented carbides, as well as their machining and nonmachining applications. It examines the relationship between the workpiece material, cutting tool and operational parameters, and provides suggestions to simplify the choice of cutting tool for a given machining application. It also examines new tool geometries, tailored substrates, and the application of thin, hard coatings to cemented carbides by chemical vapor deposition and physical vapor deposition. It discusses the tool wear mechanisms and the methods available for holding the carbide tool. The article is limited to tungsten carbide cobalt-base materials.
Book Chapter
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002132
EISBN: 978-1-62708-188-7
Abstract
Planing is a machining process for removing metal from surfaces in horizontal, vertical, or angular planes. This article discusses the process capabilities of planing and the operations of double-housing and open-side planers. It reviews workpiece setup procedures, including platelike workpieces, irregularly shaped workpieces, and workpieces used for tandem planning. The article provides information on the applications of high-speed steels and carbides in planer tools. It analyzes the tools available in a variety of configurations suited to the undercutting, slotting, and straight planing of either horizontal or vertical surfaces. These include carbide roughing, finishing, gooseneck-holder finishing, and double-cutting tools. The article lists recommended speeds and feeds for planing with high-speed steel or carbide tools. It concludes with a comparison of planing with sawing and milling.
Book Chapter
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002133
EISBN: 978-1-62708-188-7
Abstract
Shaping and slotting are used to remove metal from surfaces through the use of a single-point tool supported by a ram that reciprocates the tool in a linear motion against the workpiece. This article discusses the process capabilities of shaping and slotting with respect to the size and configuration of the workpiece. Shaping and slotting machines develop cutting action from a straight-line reciprocating motion between the tool and the workpiece. The article describes the types of shapers such as horizontal shaper and vertical shaper. It briefly discusses the applications of high-speed steel tools and carbide tools for shaping. The article also illustrates the dimensional control of workpieces during shaping. It concludes with a discussion on gear shaping.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002177
EISBN: 978-1-62708-188-7
Abstract
This article discusses the factors to be considered in selecting and evaluating machining tests for the purpose of evaluating cutting tool performance and workpiece machinability. It provides a brief description of cutting tool materials, such as high-speed steels, uncoated and coated carbides, cermets, ceramics, cubic boron nitride, and polycrystalline diamond. The article considers the matrices that represent the range of tests performed on candidate cutting tool materials: the workpiece matrix, the property matrix, and the operation matrix. Various machine tests used to evaluate cutting tools, including the impact test, turning test, and facing test, are described. The article lists the factors to be taken into consideration in measuring the machinability of a material. The article presents general recommendations for proper chip groove selection on carbide tools and concludes with information on machining economics.
Book Chapter
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002123
EISBN: 978-1-62708-188-7
Abstract
Cast cobalt alloys were developed to bridge the gap between high-speed steels and carbides. Although comparable in room-temperature hardness to high-speed steel tools, cast cobalt alloy tools retain their hardness to a much higher temperature and can be used at higher cutting speeds than high-speed steel tools. This article provides an overview of the processing, properties, and applications of these alloys.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002121
EISBN: 978-1-62708-188-7
Abstract
This article discusses the classifications of high-speed tool steels and describes alloying elements and their effects on the properties of high-speed tool steels. It analyzes the heat treatment of high-speed tool steels, namely, preheating, austenitizing, quenching, and tempering. Surface treatments for the high-speed tool steels are reviewed. The article emphasizes the properties and applications of high-speed tool steels and provides information on the factors in selecting high-speed tool steels.
Book Chapter
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002178
EISBN: 978-1-62708-188-7
Abstract
This article discusses the factors influencing cast iron machining and selection of cutting fluid and cutting tool materials. It presents a comparison of machinability of different types of cast iron, namely, gray cast iron, ductile cast iron, and malleable cast iron. In addition, the article provides an overview of different methods used in the machining of cast iron, namely, turning, boring, broaching, planing and shaping, drilling, reaming, counterboring and spotfacing, tapping, milling, grinding, and honing and lapping. Nominal speeds and feeds for the machining of cast iron with single-point and box tools, ceramic tools, high-speed steel, and carbide tools are also tabulated.
Book Chapter
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002131
EISBN: 978-1-62708-188-7
Abstract
Trepanning is used in at least four distinct production applications: round disks, large shallow through holes, circular grooves, and deep holes. This article provides an overview of the first three applications. It describes the machines, tools, techniques, and cutting fluids used for deep-hole trepanning. The article contains a table that lists speeds and feeds for the deep-hole trepanning of various steels with high-speed tool steels and carbide tools.
1