Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-8 of 8
White cast iron
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005945
EISBN: 978-1-62708-168-9
Abstract
This article introduces the general principles and applications of heat treatment to iron castings. It provides a detailed discussion on the heat treatment processes, namely, stress relieving, annealing, normalizing, throughhardening, and surface hardening for various types of cast irons. These include gray iron, ductile iron, compacted graphite iron, white iron, malleable iron, and high-alloy iron. The article describes how to control temperature and atmosphere during the heat treatment of the iron castings.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005184
EISBN: 978-1-62708-186-3
Abstract
Hardness conversions are empirical relationships that are defined by conversion tables limited to specific categories of materials. This article tabulates examples of the published hardness conversion equations for various materials including steels, cement carbides, and white cast irons. It informs that when making hardness correlations, it is best to consult ASTM E 140. The article tabulates the approximate Rockwell B hardness and Rockwell C hardness conversion numbers for nonaustenitic steels according to ASTM E 140. It also tabulates the approximate equivalent hardness numbers for Brinell hardness numbers and Vickers (diamond pyramid) hardness numbers for steel.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003111
EISBN: 978-1-62708-199-3
Abstract
Alloy cast irons are casting alloys based on the Fe-C-Si system that contain one or more alloying elements added to enhance one or more useful properties. This article discusses the composition of different types of alloy cast iron, including white cast irons, corrosion-resistant cast irons, heat-resistant cast irons, and abrasion-resistant cast irons. It provides information on the effect of the alloying element on their high-temperature properties. The article also discusses the microstructure and mechanical properties of alloy cast irons.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003106
EISBN: 978-1-62708-199-3
Abstract
Cast irons primarily are iron alloys that contain more than 2% carbon and from 1 to 3% silicon. This article provides a description of iron-iron carbide-silicon system; and discusses the classification, composition, and characteristics of cast irons, such as gray, ductile, malleable, compacted graphite, and white cast iron. A table shows the correspondence between commercial and microstructural classification, as well as final processing stage in obtaining common cast irons.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002399
EISBN: 978-1-62708-193-1
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001435
EISBN: 978-1-62708-173-3
Abstract
Cast iron can be described as an alloy of predominantly iron, carbon, and silicon. This article discusses the classification of cast irons, such as gray cast iron, white cast iron, malleable cast iron, ductile cast iron, and compacted graphite iron. It reviews the various special techniques, such as groove face grooving, studding, joint design modifications, and peening, for improving the strength of a weld or its fitness for service. The article discusses the need for postweld heat treatment that depends on the condition of the casting, possible distortion during subsequent machining, the desired finish of the machined surfaces, and prior heat treatment. It describes various welding process for welding cast irons, including oxyfuel welding, braze welding, shielded metal arc welding, gas metal arc welding, and gas-tungsten arc welding.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001006
EISBN: 978-1-62708-161-0
Abstract
Alloy cast irons are considered to be those casting alloys based on the iron-carbon-silicon system that contain one or more alloying elements intentionally added to enhance one or more useful properties. Alloy cast irons can be classified as white cast irons, corrosion-resistant cast irons, and heat-resistant cast irons. This article discusses abrasion-resistant chilled and white irons, high-alloy corrosion-resistant irons, and medium-alloy and high-alloy heat-resistant gray and ductile irons. The article outlines in a list the approximate ranges of alloy content for various types of alloy cast irons. The article explains the effects of alloying elements and the effects of inoculants. In most cast irons, it is the interaction among alloying elements that has the greatest effect on properties. Inoculants other than appropriate graphitizing or nodularizing agents are used rarely, if ever, in high-alloy corrosion-resistant or heat-resistant irons.
Book Chapter
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000604
EISBN: 978-1-62708-181-8
Abstract
This article is an atlas of fractographs that helps in understanding the causes and mechanisms of fracture of pearlitic malleable and ferritic malleable white irons, and in identifying and interpreting the morphology of fracture surfaces. The fractographs illustrate the fracture sequence, localized plastic deformation, and microcrack initiation and propagation of these irons.