Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 25
Compacted graphite iron
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006416
EISBN: 978-1-62708-192-4
Abstract
Cast irons have been widely used by engineers in applications that require low cost, excellent castability, good damping capacity, ease of machining, and wear resistance. This article discusses the classification of wear for cast irons: adhesive wear, abrasive wear, and erosive wear. Typical wear applications for a variety of cast iron grades are listed in a table. The article reviews the general wear characteristics of gray irons, compacted graphite (CG) irons, and ductile irons. It discusses the typical compositions and properties of white and chilled iron castings. Gray cast iron is the dominant material for both brake drums and disk brake rotors. The article reviews brake lining chemistry effects, graphite morphology effects, and external abrasive effects on brake drums. It concludes with information on cast iron grinding balls.
Book Chapter
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006334
EISBN: 978-1-62708-179-5
Abstract
This article describes different methods by which the composition of cast iron can be analyzed. It provides particular emphasis on the methods for evaluating the graphitization potential of a melt with prescribed limits on carbon, silicon, and alloying elements. The article discusses the effect of cooling rate on the graphitization of a given composition by chill and wedge tests. Thermal analysis of cooling curves gives excellent information about the solidification and subsequent cooling of cast iron alloys. The article presents some applications of the cooling curve analysis and explains the evaluation of carbon-silicon contents, graphite shape, graphite nucleation, and contraction-expansion balance. It illustrates the use of an immersion steel sampling device for compacted graphite iron production and provides information on the ferrite-pearlite ratio in ductile iron.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006294
EISBN: 978-1-62708-179-5
Abstract
This article discusses criteria that can be used for the classification of cast iron: fracture aspect, graphite shape, microstructure of the matrix, commercial designation, and mechanical properties. It addresses the main factors of influence on the structure of cast iron, including chemical composition, cooling rate, and heat treatment. The article describes some basic principles of cast iron metallurgy. It discusses the main effects of the chemical composition of ductile iron and compacted graphite (CG) iron. The composition of malleable irons must be selected in such a way as to produce a white as-cast structure and to allow for fast annealing times. Some typical compositions of malleable irons are presented in a table. The article concludes with information on special cast irons.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006315
EISBN: 978-1-62708-179-5
Abstract
This article describes the modification and inoculation of cast iron, and schematically illustrates the major effects of inoculation in gray cast irons. Inoculation could be considered as a common liquid-state treatment for all commercial cast irons (gray/compacted/ductile irons), while modification is essential to produce compacted graphite iron (intermediate level) and ductile iron. The article discusses the most important aspects of a gray cast iron inoculation treatment and the factors influencing its inoculation efficiency. It describes the modification and inoculation of ductile cast iron and compacted graphite cast iron.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006312
EISBN: 978-1-62708-179-5
Abstract
Compacted graphite iron (CGI) invariably includes some nodular (spheroidal) graphite particles, giving rise to the definition of the microstructure in terms of percent nodularity. This article discusses the graphite morphology and mechanical and physical properties of CGI. The mechanical and physical properties of CGI with ferritic and pearlitic matrix structures are summarized in a table. The article describes the standards for CGI, with the definition of the grades based on the minimum tensile strength. It also provides information on the applications of compacted graphite iron castings.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006303
EISBN: 978-1-62708-179-5
Abstract
Gray cast iron is one of the most tolerant of metals when used with poorly designed filling systems. Good filling systems are necessary for the production of sound and acceptable ductile iron castings. This article presents an outline description of well-designed filling systems for all varieties of cast iron and all varieties of molds. It discusses the general conditions for the filling system layout, including the downsprue, sprue/runner junction, and runner. Both gray cast iron and compacted graphite iron exhibit a growth of graphite in direct contact with the liquid metal. The article concludes with a discussion on feeding of ductile iron.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006317
EISBN: 978-1-62708-179-5
Abstract
According to the ISO 16112 standard for compacted graphite cast irons (CGIs), the graphite particles in CGIs shall be predominantly in the vermicular form when viewed on a two dimensional plane of polish. This article begins with a schematic illustration of compacted graphite microstructures with nodularity. It describes the tensile properties, hardness and compressive properties, and impact properties of CGI. The article concludes with a discussion on the fatigue strength and thermal conductivity of CGI.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006313
EISBN: 978-1-62708-179-5
Abstract
The appearance, morphology, and extent of the casting skin are the consequence of mold-metal interface interaction. This article discusses the classification of the mold-metal interaction based on severity: mild mold-metal interaction and severe mold-metal interaction. The casting surface exhibits some roughness, which depends on the molding materials used in the casting process. The article describes the effects of the casting skin in spheroidal graphite (SG) and compact graphite (CG) irons, as well as the mechanism of casting skin formation. It discusses the physics of liquid metal penetration in sand molds and concludes with information on the effect of sand additives and mold coatings.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006328
EISBN: 978-1-62708-179-5
Abstract
The morphology of the graphite particles in compacted graphite iron (CGI) is intermediate to the graphite particles found in gray iron or ductile iron. This article discusses the castability and product design of compacted graphite iron. The introduction of modern measurement and control technologies has made CGI a viable material for high-volume series production. The article describes the production of compacted graphite iron castings and the process control that depends on the production volume of components made from compacted graphite iron. It also discusses the process control for high-volume CGI commonly based on thermal analysis.
Book Chapter
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006344
EISBN: 978-1-62708-179-5
Abstract
A wide range of mechanical properties can be obtained with a given composition of cast iron, depending on the microstructural constituents that form during solidification and subsequent solid-state processing. This article discusses the mechanical properties of gray iron and provides some general property comparisons with malleable, ductile (nodular), and compacted graphite irons. The mechanical properties of gray iron are determined by the combined effects of its chemical composition, processing technique in the foundry, and cooling rates during solidification. The article provides information on the classification of gray irons based on ASTM International specification A48/A48M. It discusses the loading effect, surface effect, notch sensitivity, and environmental effect on the mechanical properties of gray iron. The chemical composition ranges of some of the more widely used heat-resistant gray irons suitable for elevated-temperature service are presented in a table.
Book Chapter
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006346
EISBN: 978-1-62708-179-5
Abstract
The main factors affecting the mechanical properties of compacted graphite irons both at room temperatures and at elevated temperatures are composition, structure (nodularity and matrix), and section size. This article presents a comparison between some properties of flake graphite (FG), compacted graphite (CG), and spheroidal graphite (SG) irons in a table. It discusses the effects of composition, structure, and section size on the mechanical properties of compacted graphite irons. The compressive and shear properties, modulus of elasticity, impact properties, fatigue strength, and elevated-temperature properties of compacted graphite irons are also reviewed.
Book Chapter
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006338
EISBN: 978-1-62708-179-5
Abstract
The International Committee of Foundry Technical Associations has identified seven basic categories of casting defects: metallic projections, cavities, discontinuities, defective surfaces, incomplete casting, incorrect dimension, and inclusions or structural anomalies. This article presents some of the common defects in each of the seven categories in a table. It discusses common defects determined during the examination of samples of ductile cast iron in Elkem's research facility in Norway. The article reviews common defects, such as shrinkage cavities, blowholes, hydrogen pinholes, nitrogen defects, and abnormal graphite morphology, found in gray iron. It concludes with a discussion on surface defects in compacted graphite iron.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.9781627081795
EISBN: 978-1-62708-179-5
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005945
EISBN: 978-1-62708-168-9
Abstract
This article introduces the general principles and applications of heat treatment to iron castings. It provides a detailed discussion on the heat treatment processes, namely, stress relieving, annealing, normalizing, throughhardening, and surface hardening for various types of cast irons. These include gray iron, ductile iron, compacted graphite iron, white iron, malleable iron, and high-alloy iron. The article describes how to control temperature and atmosphere during the heat treatment of the iron castings.
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005969
EISBN: 978-1-62708-168-9
Abstract
This article focuses on heat treatment of malleable and compacted-graphite irons to produce ferritic and pearlitic malleable irons. It describes the heat treatment cycles of malleable iron, including martempering, tempering, bainitic heat treatment, and surface hardening. The article provides information on the mechanical and physical properties of compacted-graphite irons, which are determined by the graphite shape and the pearlite/ferrite ratio.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005294
EISBN: 978-1-62708-187-0
Abstract
This article reviews the production stages of iron foundry casting, with particular emphasis on the melting practices, molten metal treatment, and feeding of molten metal into sand molds. It discusses the molten metal treatments for high-silicon gray, high-nickel ductile, and malleable irons. Foundry practices are also described for compacted graphite, high-silicon ductile, and high-alloy white irons.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005325
EISBN: 978-1-62708-187-0
Abstract
This article reviews the graphite morphology, chemical composition requirements, castability, mechanical properties, and corrosion resistance of compacted graphite (CG) irons. It describes the factors affecting the mechanical properties of CG irons. The article also presents the advantages of CG irons.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003765
EISBN: 978-1-62708-177-1
Abstract
This article describes the metallographic specimen preparation procedures for cast iron test samples, including mounting, grinding, polishing, and etching. It discusses the makeup and use of black-and-white and selective color etchants and where one might be preferred over the other. The article provides information on nearly 100 micrographs, discussing the microstructure of flake graphite in gray iron, nodular graphite in ductile iron, and temper graphite in malleable iron. It also examines the matrix microstructures of gray, ductile, compacted, and malleable cast iron samples.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003174
EISBN: 978-1-62708-199-3
Abstract
Cast iron, which usually refers to an in situ composite of stable eutectic graphite in a steel matrix, includes the major classifications of gray iron, ductile iron, compacted graphite iron, malleable iron, and white iron. This article discusses melting, pouring, desulfurization, inoculation, alloying, and melt treatment of these major ferrous alloys as well as carbon and alloy steels. It explains the principles of solidification by describing the iron-carbon phase diagram, and provides a pictorial presentation of the basic microstructures and processing steps for cast irons.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003106
EISBN: 978-1-62708-199-3
Abstract
Cast irons primarily are iron alloys that contain more than 2% carbon and from 1 to 3% silicon. This article provides a description of iron-iron carbide-silicon system; and discusses the classification, composition, and characteristics of cast irons, such as gray, ductile, malleable, compacted graphite, and white cast iron. A table shows the correspondence between commercial and microstructural classification, as well as final processing stage in obtaining common cast irons.
1