Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 142
Cast iron
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0007035
EISBN: 978-1-62708-387-4
Abstract
The cast iron family includes several different groups, including gray iron, ductile iron, compacted graphite iron, malleable iron, white iron, and many different grades within each of these alloy groups. This article addresses issues specific to gray iron, but in many instances the discussion can be related to the other cast iron groups and the various grades within those groups. It discusses the usage of techniques and procedures in cast iron fractography. The article presents a list of common defects that can initiate failure.
Series: ASM Handbook
Volume: 4F
Publisher: ASM International
Published: 01 February 2024
DOI: 10.31399/asm.hb.v4F.a0006996
EISBN: 978-1-62708-450-5
Abstract
Hardening and depth of hardening of steel is a critically important material and process design parameter. This article presents a selective overview of experimental and predictive procedures to determine steel hardenability. It also covers the breadth of steel hardenability, ranging from shallow, to very difficult to harden, to air-hardening steels.
Series: ASM Handbook
Volume: 4F
Publisher: ASM International
Published: 01 February 2024
DOI: 10.31399/asm.hb.v4F.9781627084505
EISBN: 978-1-62708-450-5
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006831
EISBN: 978-1-62708-329-4
Abstract
The information provided in this article is intended for those individuals who want to determine why a casting component failed to perform its intended purpose. It is also intended to provide insights for potential casting applications so that the likelihood of failure to perform the intended function is decreased. The article addresses factors that may cause failures in castings for each metal type, starting with gray iron and progressing to ductile iron, steel, aluminum, and copper-base alloys. It describes the general root causes of failure attributed to the casting material, production method, and/or design. The article also addresses conditions related to the casting process but not specific to any metal group, including misruns, pour shorts, broken cores, and foundry expertise. The discussion in each casting metal group includes factors concerning defects that can occur specific to the metal group and progress from melting to solidification, casting processing, and finally how the removal of the mold material can affect performance.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006374
EISBN: 978-1-62708-192-4
Abstract
This article focuses on friction and wear of automotive and aircraft brakes. It provides a comparison of friction and wear behaviors, frictional characteristics, and frictional performance of the friction materials. The article describes the components of brake friction materials and the classifications of brake lining materials. It discusses the effect of formulation compositions and manufacturing processes and the effect of braking operation conditions. The article provides information on aircraft brake linings, which operate under a wide range of kinetic energy conditions. The morphology effect of graphite on automotive brake drum and disk is explained. The article also describes the characteristics of specific wear rates for both normal and local cast iron in automotive brake drums and disk rotors. It provides information on noises, vibrations, and harshness caused by brake pads. The article concludes with information on physical and chemical testing of brakes and toxicity of brake formulation and regulations.
Book Chapter
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006416
EISBN: 978-1-62708-192-4
Abstract
Cast irons have been widely used by engineers in applications that require low cost, excellent castability, good damping capacity, ease of machining, and wear resistance. This article discusses the classification of wear for cast irons: adhesive wear, abrasive wear, and erosive wear. Typical wear applications for a variety of cast iron grades are listed in a table. The article reviews the general wear characteristics of gray irons, compacted graphite (CG) irons, and ductile irons. It discusses the typical compositions and properties of white and chilled iron castings. Gray cast iron is the dominant material for both brake drums and disk brake rotors. The article reviews brake lining chemistry effects, graphite morphology effects, and external abrasive effects on brake drums. It concludes with information on cast iron grinding balls.
Book Chapter
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006339
EISBN: 978-1-62708-179-5
Abstract
Austempered ductile iron (ADI) results from a specialty heat treatment of ductile cast iron. This article discusses the production of austempered ductile iron by heat treatment. The austempered ductile iron grades, according to ISO 17804 and EN 1564, are presented in a table. For economic reasons, or to avoid metallurgical problems, combinations of alloys are often used to achieve the desired hardenability in austempered ductile iron. The article provides information on the alloy combinations for austempered ductile iron. The mechanical properties, fracture toughness, fatigue, and abrasion resistance of the austempered ductile iron are discussed. The article concludes with information on the applications for austempered ductile iron.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006309
EISBN: 978-1-62708-179-5
Abstract
Malleable iron is a type of cast iron that has most of its carbon in the form of irregularly shaped graphite nodules instead of flakes, as in gray iron, or small graphite spherulites, as in ductile iron. This article discusses the production of malleable iron based on the metallurgical criteria: to produce solidified white iron throughout the section thickness; and to produce the desired graphite distribution (nodule count) upon annealing. It describes the induction heating and quenching or flame heating and quenching for surface hardening of fully pearlitic malleable iron. Laser and electron beam techniques also have been used for hardening selected areas on the surface of pearlitic and ferritic malleable iron castings that are free from decarburization.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006319
EISBN: 978-1-62708-179-5
Abstract
The transformation of austenite of cast irons represents a more complex and less studied subject. This article discusses the general features of the decomposition of austenite into bainite. It describes the heat treatment cycles of austempered cast iron microstructure. The article reviews several factors, such as presence of graphite and austenite grain size, which affect the transformation rate of austenite during austempering of free-graphite cast irons.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006299
EISBN: 978-1-62708-179-5
Abstract
Thermal analysis is used to analyze solidification processes by recording the temperature as a function of time during cooling or heating of a metal or alloy to or from a temperature above its melting point. This article describes the use of cooling curves for analyzing a solidification process, such as the solidification temperature, structure analysis, fraction of phases and heat of fusion with focus on solidification of cast iron, and the use of cooling curves to control and adjust the casting conditions. It discusses deviations from equilibrium that occur due to kinetic effects during solidification. The article also illustrates the evaluation of fraction of solid formed during the precipitation of austenite from heat balance.
Book Chapter
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006329
EISBN: 978-1-62708-179-5
Abstract
Foundry practices critical to the production of cast irons include melting, alloying, molten metal treatment, pouring, and the design of feeding systems (gating and risering) to allow proper filling of the casting mold. This article reviews these production stages of iron foundry casting, with particular emphasis on the melting practices, molten metal treatment, and feeding of molten metal into sand molds. It discusses the castability factors, such as fluidity, shrinkage, and resistance, of gray iron. Typical cupola charge compositions and the final analyses for class 30 and class 40 gray iron castings are presented in a table. The article describes the induction melting and arc furnace melting used in gray iron foundries. It also reviews the inoculation methods such as stream inoculation and mold inoculation, of gray iron.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006314
EISBN: 978-1-62708-179-5
Abstract
The microstructure that develops during the solidification stage of cast iron largely influences the subsequent solid-state transformations and mechanical properties of the cast components. This article provides a brief introduction of methods that can be used for simulating the solidification microstructure of cast iron. Analytical as well as numerical models describing solidification phenomena at both macroscopic and microscopic scales are presented. The article introduces macroscopic transport equations and presents analytical microscopic models for solidification. These models include the dendrite growth models and the cooperative eutectic growth models. The article provides some solutions using numerical models to simulate the kinetics of microstructure formation in cast iron. It concludes with a discussion on cellular automaton (CA) technique that can handle complex topology changes and reproduce most of the solidification microstructure features observed experimentally.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006310
EISBN: 978-1-62708-179-5
Abstract
Unlike gray iron, which contains graphite flakes, ductile iron has an as-cast structure containing graphite particles in the form of small, rounded, spheroidal nodules in a ductile metallic matrix. This article discusses the raw materials that are used for ductile iron production and outlines the most common and important requirements for controlling the composition of ductile iron. Treatment to produce ductile iron involves the addition of magnesium to change the form of the graphite, followed by or combined with inoculation of a silicon-containing material to ensure a graphitic structure with freedom from carbides. The article describes the methods of magnesium treatment, control of magnesium content, and inoculation. It concludes with a discussion on the metallurgical controls of ductile iron production.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006300
EISBN: 978-1-62708-179-5
Abstract
This article discusses the stable and metastable three-phase fields in the binary Fe-C phase diagram. It schematically illustrates that austenite decomposition requires accounting for nucleation and growth of ferrite and then nucleation and growth of pearlite in the remaining untransformed volume. The article describes the austenite decomposition to ferrite and pearlite in spheroidal graphite irons and lamellar graphite irons. It provides a discussion on modeling austenite decomposition to ferrite and pearlite.
Book Chapter
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006334
EISBN: 978-1-62708-179-5
Abstract
This article describes different methods by which the composition of cast iron can be analyzed. It provides particular emphasis on the methods for evaluating the graphitization potential of a melt with prescribed limits on carbon, silicon, and alloying elements. The article discusses the effect of cooling rate on the graphitization of a given composition by chill and wedge tests. Thermal analysis of cooling curves gives excellent information about the solidification and subsequent cooling of cast iron alloys. The article presents some applications of the cooling curve analysis and explains the evaluation of carbon-silicon contents, graphite shape, graphite nucleation, and contraction-expansion balance. It illustrates the use of an immersion steel sampling device for compacted graphite iron production and provides information on the ferrite-pearlite ratio in ductile iron.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006340
EISBN: 978-1-62708-179-5
Abstract
This article discusses the production process, testing methods, quality control, and common defects found in heavy-section ductile iron (DI) castings, along with analyses of industrial examples. The common defects include shrinkage defects, graphite-particle-related defects, and chunk graphite defects. The recommended chemical compositions for certain section thicknesses in ductile iron grades are presented in a table. The article illustrates the relationship between microstructure and mechanical properties of DI by using either industrial examples or castings produced under laboratory conditions.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006320
EISBN: 978-1-62708-179-5
Abstract
This article provides a short time travel of the evolution of cast iron from witchcraft to virtual cast iron, a road paralleled by the gigantic stride from a low-quality, corrupt metal to the high-tech material that it is today. It presents a chronological list of developments and use of cast iron during prehistory, antiquity, and the medieval ages in a table. The earliest successful iron founding is generally credited to the ancient Mesopotamian civilizations many centuries before Christ. The article discusses the evolution of early cast iron in Mesopotamia and China, as well as in Europe in the medieval ages. It provides information on the applications of cast iron as a high-tech, economical, and modern material.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006294
EISBN: 978-1-62708-179-5
Abstract
This article discusses criteria that can be used for the classification of cast iron: fracture aspect, graphite shape, microstructure of the matrix, commercial designation, and mechanical properties. It addresses the main factors of influence on the structure of cast iron, including chemical composition, cooling rate, and heat treatment. The article describes some basic principles of cast iron metallurgy. It discusses the main effects of the chemical composition of ductile iron and compacted graphite (CG) iron. The composition of malleable irons must be selected in such a way as to produce a white as-cast structure and to allow for fast annealing times. Some typical compositions of malleable irons are presented in a table. The article concludes with information on special cast irons.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006330
EISBN: 978-1-62708-179-5
Abstract
Solidification of cast iron alloys brings about volumetric changes. This article describes direct measurements of volume changes with an illustration of the analysis of volumetric changes during solidification of cast iron with the use of a specially designed riser combined with a furnace. It provides a discussion on the dilatometer analysis that is generally used to measure linear displacement as a function of temperature for all types of materials, and the problems associated with volume-change measurements. The article presents a graphical representation of a consequence of the anisotropy, where the calculated volume change is illustrated as a function of temperature. It concludes with a review of kinetic of graphite expansion.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006324
EISBN: 978-1-62708-179-5
Abstract
This article discusses the influence of microstructure and chemical composition on the physical properties of cast iron. The physical properties include density, thermal expansion, thermal conductivity, specific heat, electrical conductivity, magnetic properties, and acoustic properties. The article describes the properties of liquid iron in terms of surface energy, contact angles, and viscosity. The conductive properties such as thermal and electrical conductivity, of the main metallographic phases present in cast iron are presented in a table. The article discusses the magnetic properties of cast iron in terms of magnetic intensity, magnetic induction, magnetic permeability, remanent magnetism, coercive force, and hysteresis loss. It concludes with a discussion on the acoustic properties of cast iron.
1