Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 26
Erosive wear
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006795
EISBN: 978-1-62708-295-2
Abstract
Erosion is the progressive loss of original material from a solid surface due to mechanical interaction between that surface and a fluid, a multicomponent fluid, an impinging liquid, or impinging solid particles. The detrimental effects of erosion have caused problems in a number of industries. This article describes the processes involved in erosion of ductile materials, brittle materials, and elastomers. Some examples of erosive wear failures are given on abrasive erosion, liquid impingement erosion, cavitation, and erosion-corrosion. In addition, the article provides information on the selection of materials for applications in which erosive wear failures can occur.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006796
EISBN: 978-1-62708-295-2
Abstract
Erosion of a solid surface can be brought about by liquid droplet impingement (LDI), which is defined as "progressive loss of original material from a solid surface due to continued exposure to erosion by liquid droplets." In this article, the emphasis is placed on the damage mechanism of LDI erosion under the influence of a liquid film and surface roughness and on the prediction of LDI erosion. The fundamentals of LDI and processes involved in initiation of erosion are also discussed.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006372
EISBN: 978-1-62708-192-4
Abstract
Stainless steels are characterized as having relatively poor wear resistance and tribological properties, but they are often required for a particular application because of their corrosion resistance. This article describes the classification of stainless steels and wear. Stainless steels have been classified by microstructure and are categorized as austenitic, martensitic, ferritic, or duplex. The main categories of wear are related to abrasion, erosion, adhesive wear, and surface fatigue. The article presents a list that proposes the alloy family that could be the optimal selection for a particular wear mode. The corrosion modes include dry sliding, tribocorrosion, erosion, erosion-corrosion, cavitation, dry erosion, erosion-oxidation, galling and fretting.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006378
EISBN: 978-1-62708-192-4
Abstract
Liquid impingement erosion has been defined as progressive loss of original material from a solid surface due to continued exposure to impacts by liquid drops or jets. This article focuses on the core nature of erosion by liquid impingement, due to the greater appreciation of the distinctions between the different forms of erosion. It discusses steam turbine blade erosion, aircraft rain erosion, and rain erosion of wind turbine blades. The article describes the mechanisms of liquid impact erosion and time dependence of erosion rate. It reviews critical empirical observations regarding both impingement variables (velocity, impact angle, droplet size, and physical properties of liquids) and erosion resistance of materials, including the correlation between erosion resistance and mechanical properties and the effects of alloying elements and microstructure. The article also provides information on the ways to combat erosion.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006384
EISBN: 978-1-62708-192-4
Abstract
This article provides an overview of cavitation erosion with a specific focus on the estimation of mass loss. It describes the mechanisms of cavitation erosion and the types of laboratory devices to evaluate the resistance to cavitation erosion of materials. The laboratory devices include rotating disks, vibratory devices, cavitating liquid jets, and high-speed cavitation tunnels. The article discusses materials selection and surface protection to prevent cavitation erosion. It reviews the fluid-structure interaction that plays a role in cavitation erosion particularly for compliant materials. The article provides information on the numerical prediction of cavitation erosion damage by the finite element method (FEM).
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006390
EISBN: 978-1-62708-192-4
Abstract
This article focuses on the tribological behavior of group 1, 2, and 3 cobalt-base alloys, namely, carbide-type wear-resistant alloys and laves-type wear-resistant alloys. The behavior includes hardness, yield strength and ductility, and fracture toughness. The article contains a table that lists the nominal compositions and typical applications of cobalt-base alloys. It discusses the properties and relative performance of specific alloys when subjected to the more common types of wear. These include abrasive wear, high-temperature sliding wear, rolling-contact fatigue wear, and erosive wear.
Book Chapter
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006416
EISBN: 978-1-62708-192-4
Abstract
Cast irons have been widely used by engineers in applications that require low cost, excellent castability, good damping capacity, ease of machining, and wear resistance. This article discusses the classification of wear for cast irons: adhesive wear, abrasive wear, and erosive wear. Typical wear applications for a variety of cast iron grades are listed in a table. The article reviews the general wear characteristics of gray irons, compacted graphite (CG) irons, and ductile irons. It discusses the typical compositions and properties of white and chilled iron castings. Gray cast iron is the dominant material for both brake drums and disk brake rotors. The article reviews brake lining chemistry effects, graphite morphology effects, and external abrasive effects on brake drums. It concludes with information on cast iron grinding balls.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006433
EISBN: 978-1-62708-192-4
Abstract
Solid particle erosion (SPE) is the loss of material that results from repeated impact of solid particles energized in a carrier fluid. This article reviews important SPE variables, their effects for different classes of materials, composites and coatings, and the mechanisms and theories proposed to explain SPE. It discusses the SPE of metals, steels, and ceramics, as well as erosion of alloys with coarse, nominally two-phase microstructures in which the second-phase particles (SPPs) are typically large compared with the dimensions of the damage zone created by the impact of one particle. The article summarizes the erosion characteristics of polymer matrix composites (PMCs), metal matrix composites (MMCs), ceramic matrix composites (CMCs), and erosion-resistant coatings. The combination of parameters included in most erosion models is also summarized.
Book Chapter
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006348
EISBN: 978-1-62708-179-5
Abstract
This article presents typical wear applications for a variety of cast iron grades in a table. In general, wear is classified according to three major types: adhesive (frictional) wear (sliding and rolling) caused by contact of one metallic surface with another; abrasive wear caused by contact with metallic (shots, swarf) or nonmetallic abrasive materials; and erosive wear. The article discusses general wear characteristics of gray iron, compacted gray iron, and ductile iron. It provides information on the brake lining chemistry effects, graphite morphology effects, normal cast iron wear, local cast iron wear, and external abrasive effects on brake drums and disk brake rotors made of gray cast iron. The article concludes with a discussion on the application of cast iron for grinding balls.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005734
EISBN: 978-1-62708-171-9
Abstract
The use of thermal spray coatings to restore worn surfaces has provided a significant improvement in surface performance due to improved wear resistance. This article discusses the general use of thermal spray coatings in reducing predominant types of wear, namely, abrasive wear, erosive wear, adhesive wear, and surface fatigue.
Book Chapter
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005677
EISBN: 978-1-62708-198-6
Abstract
This article reviews friction and wear of various dental materials that have been studied by fundamental wear measurements, simulated service wear measurements, and clinical measurements. The materials include dental amalgam, composite restorative materials, pit and fissure sealants, dental cements, porcelain and plastic denture teeth, dental feldspathic porcelain and ceramics, endodontic instruments, periodontal instruments, and orthodontic wires. The article describes the correlations of properties such as the hardness, fracture toughness, and wear. It provides information on wear mechanism such as the sliding adhesive wear, two-body abrasion, three-body abrasion, erosion, and fatigue.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005420
EISBN: 978-1-62708-196-2
Abstract
This article focuses on the concepts involved in heat-transfer modeling, thermomechanical modeling, and microsegregation modeling of hot tearing. It discusses the modeling of solidification defects, namely, inclusion entrapment, segregation, shrinkage cavities, gas porosity, mold-wall erosion, and hot-tear cracks.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005219
EISBN: 978-1-62708-187-0
Abstract
This article suggests procedures to increase the availability and function of patterns and tooling. It discusses the common expected failure mechanisms, such as erosion and fatigue, for dies and patterns. A successful maintenance program requires good record keeping for each tool. The article lists information required for the maintenance tooling record and preventive maintenance (PM) items from the North American Die Casting Association's publication E501. It concludes with information on objectives for proper storage of tools and patterns. The objectives are preventing tool degradation, safe workplace, easy location, proximity, and cataloging and tracking.
Book Chapter
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004161
EISBN: 978-1-62708-184-9
Abstract
Ash handling is a major challenge for utilities and industries using coal as a primary fuel. This article discusses the operating problems associated with conventional fly ash/bottom ash handling systems. It describes the two types of fly ash systems, namely, dry and wet fly ash systems. The article presents the ways to minimize operating problems that occur due to corrosion, erosion, scaling, and plugging.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009073
EISBN: 978-1-62708-177-1
Abstract
Rough grinding and polishing of specimens are required to prepare fiber-reinforced composite samples for optical analysis. This article discusses the consumables, process variables, and the equipment that influence the sample preparation procedure. It describes the hand and automated grinding methods. The article summarizes the rough and final polishing steps for both hand and automated techniques. Common artifacts that may be created during grinding and polishing steps of composite samples are reviewed. These include scratches, fiber pull-out, matrix smears, streaks, erosion of different phases, and fiber and sample edge rounding and relief.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003603
EISBN: 978-1-62708-182-5
Abstract
Corrosion is classified into two categories: corrosion that is not influenced by any other process and corrosion that is influenced by another process such as the presence of stresses or erosion. This article discusses uniform corrosion, localized corrosion, metallurgically influenced corrosion, and microbiologically influenced corrosion, which fit under the classification of corrosion that is not influenced by any outside process. It also explains mechanically assisted degradation and environmentally induced cracking, which fit under the classification of corrosion that is influenced by an outside process.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003630
EISBN: 978-1-62708-182-5
Abstract
This article provides a discussion on the mechanisms of wear and their interactions with gaseous corrosion. The wear mechanisms include abrasive, erosive, fretting, and sliding. The measurement of degradation on combustion walls in coal-fired boilers is discussed. The article concludes with information on the common coating techniques used for wear-corrosion control.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003669
EISBN: 978-1-62708-182-5
Abstract
Erosion, cavitation, and impingement are mechanically assisted forms of material degradation that often contribute to corrosive wear. This article identifies and describes several tests that are useful for ranking the service potential of candidate materials under such conditions. The tests, designed by ASTM as G32, G73, G75, and G76, define specimen preparation, test conditions, procedures, and data interpretation. The article examines the relative influence of various test parameters on the incubation and intensity of cavitation, including temperature, pressure, flow velocity, and vibration dynamics. It concludes with a discussion on data correlations and the relationship between laboratory results and service expectations.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003631
EISBN: 978-1-62708-182-5
Abstract
Mechanically assisted degradation of metals is defined as any type of degradation that involves a corrosion mechanism and a wear or fatigue mechanism. This article provides a discussion on the mechanisms of five forms of degradation: erosion, fretting corrosion, fretting fatigue, cavitation and water drop impingement, and corrosion fatigue. It describes the factors affecting the severity of fretting corrosion. The article also illustrates the relationship between corrosion fatigue and stress-corrosion cracking.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001816
EISBN: 978-1-62708-180-1
Abstract
This article explains the main types and characteristic causes of failures in boilers and other equipment in stationary and marine power plants that use steam as the working fluid with examples. It focuses on the distinctive features of each type that enable the failure analyst to determine the cause and suggest corrective action. The causes of failures include tube rupture, corrosion or scaling, fatigue, erosion, and stress-corrosion cracking. The article also describes the procedures for conducting a failure analysis.
1