Skip Nav Destination
Close Modal
By
Lucas W. Koester, Leonard J. Bond, Peter C. Collins, Hossein Taheri, Timothy Bigelow
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 48
Surface flaws
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.9781627084390
EISBN: 978-1-62708-439-0
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006566
EISBN: 978-1-62708-290-7
Abstract
This article provides a general overview of additively manufactured steels and focuses on specific challenges and opportunities associated with additive manufacturing (AM) stainless steels. It briefly reviews the classification of the different types of steels, the most common AM processes used for steel, and available powder feedstock characteristics. The article emphasizes the characteristics of the as-built microstructure, including porosity, inclusions, and residual stresses. It also reviews the material properties of AM steel parts, including hardness, tensile strength, and fatigue strength, as well as environmental properties with respect to corrosion resistance, highlighting the importance of postbuild thermal processing.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006629
EISBN: 978-1-62708-213-6
Abstract
This article focuses on wet chemical methods that have stood the test of time in laboratories around the world. It begins with a description of the appropriateness of classical wet methods. This is followed by sections on sampling procedures, basic chemical equilibria, and wet analytical chemistry. Mechanical methods and nonoxidizing acids and/or acid mixtures for dissolving solid samples for wet chemical analysis are then reviewed. Qualitative methods that are used to identify materials by wet chemical reaction are also included. The article provides information on various methods for the separation of chemical mixtures and on the types of gravimetry and titrimetry. Strategies for removing inclusions are also included to aid in their compositional understanding. The article also briefly describes the processes involved in chemical surface studies and partitioning of oxidation states. It ends by presenting some examples of the applications of classical wet methods.
Book Chapter
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006465
EISBN: 978-1-62708-190-0
Abstract
Additive manufacturing (AM) is the process of joining materials to make parts from three-dimensional (3D) model data, usually layer upon layer, as opposed to subtractive manufacturing and formative manufacturing methodologies. This article discusses various defects in AM components, such as porosity, inclusions, cracking, and residual stress, that can be avoided by using vendor recommended process parameters and approved materials. It describes the development of process-structure-property-performance modeling. The article explains the practical considerations in nondestructive evaluation for additively manufactured metallic parts. It also examines nondestructive testing (NDT) inspection and characterization methods for each of the manufacturing stages in their natural order. The article provides information on various inspection techniques for completed AM manufactured parts. The various electromagnetic and eddy current techniques that can be used to detect changes to nearsurface geometric anomalies or other defects are also discussed. These include ultrasonic techniques, radiographic techniques, and neutron imaging.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006467
EISBN: 978-1-62708-190-0
Abstract
This article focuses on nondestructive inspection of steel bars. The primary objective in the nondestructive inspection of steel bars and wire is to detect conditions in the material that may be detrimental to the satisfactory end use of the product. The article discusses various types of flaws encountered in the inspection of steel bars, including porosity, inclusions, scabs, cracks, seams, and laps. Inspection methods, such as magnetic-particle inspection. liquid penetrant inspection, ultrasonic inspection, and electromagnetic inspection, of steel bars are also described. The article provides a discussion on electromagnetic systems, eddy-current systems, and magnetic permeability systems for detection of flaws on steel bars. It concludes with a description of nondestructive inspection of steel billets.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006327
EISBN: 978-1-62708-179-5
Abstract
From the point of view of economics and ecology, thin-wall ductile iron (TWDI) castings can compete in terms of mechanical properties with the light castings made of aluminum alloys. This article discusses the effect of technological factors on the cooling rate and physicochemical state of the liquid metal for preparing thin-wall castings with good mechanical properties and performance while avoiding casting defects. It describes a variety of defects that may appear during the production of TWDI castings, such as casting skin anomalies (e.g., flake graphite, graphite segregation), graphite clusters, exploded graphite, slag inclusions, shrinkage porosity, eutectic chill and secondary carbides, and cold shuts. The article reviews the tensile, fatigue, impact, and wear properties of TWDI castings. It provides information on the production and applications of TWDI castings.
Book Chapter
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006338
EISBN: 978-1-62708-179-5
Abstract
The International Committee of Foundry Technical Associations has identified seven basic categories of casting defects: metallic projections, cavities, discontinuities, defective surfaces, incomplete casting, incorrect dimension, and inclusions or structural anomalies. This article presents some of the common defects in each of the seven categories in a table. It discusses common defects determined during the examination of samples of ductile cast iron in Elkem's research facility in Norway. The article reviews common defects, such as shrinkage cavities, blowholes, hydrogen pinholes, nitrogen defects, and abnormal graphite morphology, found in gray iron. It concludes with a discussion on surface defects in compacted graphite iron.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006016
EISBN: 978-1-62708-172-6
Abstract
This article discusses the concepts of quality control (QC) and quality assurance (QA), and clarifies the differences and similarities in the roles and responsibilities of QC and QA personnel. It describes the inspection procedures used to verify proper surface preparation and installation of the protective coating/lining system. Prior to beginning surface-preparation operations, many specifications will require a presurface-preparation inspection to verify the correction of fabrication defects and removal of surface contamination such as grease, oil, cutting compounds, lubricants, and chemical contaminants. When inspecting concrete prior to coating installation, three areas of concern exist: surface roughness, moisture content in concrete, and acidity/alkalinity of the surface. The article provides information on the industry standards for assessing surface cleanliness. It details postcoating application quality requirements, including measuring of dry-film thickness, assessing intercoat cleanliness, verifying minimum and maximum recoat intervals, performing holiday/pinhole detection, conducting cure/hardness testing, and assessing adhesion of the applied coating system.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006015
EISBN: 978-1-62708-172-6
Abstract
Powder coatings are widely used by manufacturers as a finish of choice to enhance the appearance and performance of their products. This article begins with a discussion on advantages and disadvantages of powder coatings. It describes the selection of coating-types and uses of powder coatings in appliance industries, furniture industries, computer industries, fixture industries, architectural industries, automotive industries, agriculture and construction equipment industries, recreational equipment industries, and general industries. Powder coating formulations consist of binder systems, pigments, extenders, and additives. The basic process flow for the manufacture of powder coatings consists of premix, extrusion, grinding, and packing. The article also provides information on application of powder coatings, including pretreatment, deposition, and curing as well as on troubleshooting, trends and challenges for the powder coatings.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006106
EISBN: 978-1-62708-175-7
Abstract
Bronze and brass alloys are two key classes of materials in copper-base powder metallurgy applications. They are often compacted using mechanical or hydraulic pressing machines. This article provides an overview of the powder pressing process, providing information on the powder properties of bronze and brass and the roles of lubricant and compaction dies in the pressing process. It discusses the structural defects that originate during the compaction process. The article also describes the major factors that influence the sintering response in bronze, prealloyed bronze, brass, and nickel-silver.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006105
EISBN: 978-1-62708-175-7
Abstract
Development of the properties of copper powder metallurgy parts is affected by pressing and sintering processes used in the production of components, such as contacts, carbon brushes, and friction materials. This article briefly describes the powder properties of copper and discusses the roles of lubricant and compaction dies in pressing of copper powders. It explains the structural defects that originate during the compaction process of PM parts. The article also provides information on sintering, re-pressing, and re-sintering of copper PM parts.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005967
EISBN: 978-1-62708-166-5
Abstract
Of the various thermal processing methods for steel, heat treating has the greatest overall impact on control of residual stress and on dimensional control. This article provides an overview of the effects of material- and process-related parameters on the various types of failures observed during and after heat treating of quenched and tempered steels. It describes phase transformations of steels during heating, cooling of steel with and without metallurgical transformation, and the formation of high-temperature transformation products on the surface of a carburized part. The article illustrates the use of carbon restoration on decarburized spring steels. Different geometric models for carbide formation are shown schematically. The article also describes the different microstructural features such as grain size, microcracks, microsegregation, and banding.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005871
EISBN: 978-1-62708-167-2
Abstract
Induction hardening involves multiple processing steps of heating and quenching which presents opportunity for errors and defects. This article discusses the common problems associated with induction hardening of shafts as well as the methods to diagnose, inspect, and prevent them. In addition to the major defects such as laps and seams that remain after induction hardening, microstructural transformation, decarburization, residual stress, and grain size, as well as variations in carbon content, composition, or microstructure can also affect the hardened part.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005755
EISBN: 978-1-62708-171-9
Abstract
This article provides information on thermal spray coating features, which combine to determine the properties of a coating. These include the lamellar or layered splat structure, entrapped unmelted or resolidified particles, pores, oxide inclusions, grains, phases, cracks, and bond interfaces. The article describes the sources of porosity and the factors that control the final coating porosity levels. The article also lists the materials most suitable for thermal spraying processes.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005571
EISBN: 978-1-62708-174-0
Abstract
Fluxes are added to the welding environment to improve arc stability, provide a slag, add alloying elements, and refine the weld pool. This article discusses the effect of oxygen, which is an important chemical reagent to control the weld metal composition, microstructure, and properties. It provides information on the inclusions that form as a result of reactions between metallic alloy elements and nonmetallic tramp elements, or by mechanical entrapment of nonmetallic slag or refractory particles. The article reviews the considerations of flux formulation during shielded metal arc welding and flux cored arc welding (FCAW). It describes the types of fluxes used for submerged arc welding and FCAW as well as five essential groups of flux ingredients and their interactions.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005528
EISBN: 978-1-62708-197-9
Abstract
This article discusses a set of experimental and computational studies aimed at understanding the effect of various processing parameters on the extent of burr and other defect formation during sheet edge-shearing and slitting processes. It describes the development of experimentally validated finite-element models for analyzing the classes of shearing processes. The article also discusses the use of microstructural characterization with stereology to render three-dimensional volumetric parameters. It concludes with information on the numerical simulation of an edge-shearing process, along with sensitivity studies with respect to process and tool parameters.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005519
EISBN: 978-1-62708-197-9
Abstract
This article begins with information on the fundamentals of chip formation process and general considerations for the modeling and simulation of machining processes. It focuses on smaller-scale models that seek to characterize the workpiece/tool/chip interface and behaviors closely associated with that. The article describes the advantages and disadvantages of various finite-element modeling approaches, namely, transient models, continuous cutting model, steady-state model, hybrid model, two-dimensional models, and three-dimensional models. It discusses flow stress measurements using constitutive and inverse testing methods and reviews tool design for chip removal. The article explains the effect of tool geometry on burr formation and the effect of coatings on tool temperatures. It concludes with information on tool wear, which is an unavoidable effect of metal cutting.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005420
EISBN: 978-1-62708-196-2
Abstract
This article focuses on the concepts involved in heat-transfer modeling, thermomechanical modeling, and microsegregation modeling of hot tearing. It discusses the modeling of solidification defects, namely, inclusion entrapment, segregation, shrinkage cavities, gas porosity, mold-wall erosion, and hot-tear cracks.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005293
EISBN: 978-1-62708-187-0
Abstract
Hot isostatic pressing (HIP) is used to eliminate porosity in castings. This article provides a history and an overview of the HIP system. It illustrates the reasons for using HIP and discusses the criteria for selecting HIP process parameters. The main mechanisms by which pores are eliminated during HIP are reviewed. The article describes the effect of HIP on the mechanical properties, shape, and structure of castings as well as the effect of inclusions on as-HIPed properties. It examines the problems encountered in HIP and their solution. The article concludes with information on the economics of HIP processing.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005344
EISBN: 978-1-62708-187-0
Abstract
The International Committee of Foundry Technical Associations has identified seven basic categories of casting defects: metallic projections, cavities, discontinuities, defective surfaces, incomplete casting, incorrect dimension, and inclusions or structural anomalies. This article presents some of the common defects in each of the seven categories. It also discusses select case studies relevant to inclusions, cavities (gas porosity, shrinkage), and discontinuities (hot tearing, cold shut).
1