Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-19 of 19
Shrinkage
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006560
EISBN: 978-1-62708-210-5
Abstract
Alloy 296.0 is an aluminum permanent-mold casting alloy with higher silicon than 295.0, which reduces shrinkage and improves fluidity. This datasheet provides information on key alloy metallurgy, fabrication characteristics, processing effects on physical and mechanical properties, and application characteristics of this series alloy. Room-temperature aging characteristics for aluminum alloy 296.0-T4 and 296.0-T6 are also illustrated.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006496
EISBN: 978-1-62708-207-5
Abstract
Castability is a complex characteristic that depends on both the intrinsic fluid properties of the molten metal and the manner in which the particular alloy solidifies. This article discusses the practical aspects of solidification important to aluminum foundrymen. The primary focus is on the chemical segregation that occurs during freezing, because it determines the castability of the alloy. The article describes the two types of segregation, namely, microsegregation and macrosegregation. It discusses the effect of freezing range on castability of an alloy. The article lists the freezing range of a number of important alloys. It concludes with a discussion on castability of 2xx, 3xx, 4xx, 5xx, and 7xx alloys.
Book Chapter
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006329
EISBN: 978-1-62708-179-5
Abstract
Foundry practices critical to the production of cast irons include melting, alloying, molten metal treatment, pouring, and the design of feeding systems (gating and risering) to allow proper filling of the casting mold. This article reviews these production stages of iron foundry casting, with particular emphasis on the melting practices, molten metal treatment, and feeding of molten metal into sand molds. It discusses the castability factors, such as fluidity, shrinkage, and resistance, of gray iron. Typical cupola charge compositions and the final analyses for class 30 and class 40 gray iron castings are presented in a table. The article describes the induction melting and arc furnace melting used in gray iron foundries. It also reviews the inoculation methods such as stream inoculation and mold inoculation, of gray iron.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006340
EISBN: 978-1-62708-179-5
Abstract
This article discusses the production process, testing methods, quality control, and common defects found in heavy-section ductile iron (DI) castings, along with analyses of industrial examples. The common defects include shrinkage defects, graphite-particle-related defects, and chunk graphite defects. The recommended chemical compositions for certain section thicknesses in ductile iron grades are presented in a table. The article illustrates the relationship between microstructure and mechanical properties of DI by using either industrial examples or castings produced under laboratory conditions.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006330
EISBN: 978-1-62708-179-5
Abstract
Solidification of cast iron alloys brings about volumetric changes. This article describes direct measurements of volume changes with an illustration of the analysis of volumetric changes during solidification of cast iron with the use of a specially designed riser combined with a furnace. It provides a discussion on the dilatometer analysis that is generally used to measure linear displacement as a function of temperature for all types of materials, and the problems associated with volume-change measurements. The article presents a graphical representation of a consequence of the anisotropy, where the calculated volume change is illustrated as a function of temperature. It concludes with a review of kinetic of graphite expansion.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006326
EISBN: 978-1-62708-179-5
Abstract
This article discusses some of the factors that are linked directly to the casting design of ductile iron castings. It reviews the choice of molding process, application of draft, and patternmaker's allowance that should be taken into consideration in designing castings. The article describes the solidification shrinkage associated with the volume change that occurs during solidification, as well as strength and stiffness of ductile iron castings. It concludes with a discussion on the thermal deformation and residual stress in ductile iron castings.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006327
EISBN: 978-1-62708-179-5
Abstract
From the point of view of economics and ecology, thin-wall ductile iron (TWDI) castings can compete in terms of mechanical properties with the light castings made of aluminum alloys. This article discusses the effect of technological factors on the cooling rate and physicochemical state of the liquid metal for preparing thin-wall castings with good mechanical properties and performance while avoiding casting defects. It describes a variety of defects that may appear during the production of TWDI castings, such as casting skin anomalies (e.g., flake graphite, graphite segregation), graphite clusters, exploded graphite, slag inclusions, shrinkage porosity, eutectic chill and secondary carbides, and cold shuts. The article reviews the tensile, fatigue, impact, and wear properties of TWDI castings. It provides information on the production and applications of TWDI castings.
Book Chapter
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006338
EISBN: 978-1-62708-179-5
Abstract
The International Committee of Foundry Technical Associations has identified seven basic categories of casting defects: metallic projections, cavities, discontinuities, defective surfaces, incomplete casting, incorrect dimension, and inclusions or structural anomalies. This article presents some of the common defects in each of the seven categories in a table. It discusses common defects determined during the examination of samples of ductile cast iron in Elkem's research facility in Norway. The article reviews common defects, such as shrinkage cavities, blowholes, hydrogen pinholes, nitrogen defects, and abnormal graphite morphology, found in gray iron. It concludes with a discussion on surface defects in compacted graphite iron.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005420
EISBN: 978-1-62708-196-2
Abstract
This article focuses on the concepts involved in heat-transfer modeling, thermomechanical modeling, and microsegregation modeling of hot tearing. It discusses the modeling of solidification defects, namely, inclusion entrapment, segregation, shrinkage cavities, gas porosity, mold-wall erosion, and hot-tear cracks.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005421
EISBN: 978-1-62708-196-2
Abstract
This article focuses on the modeling and simulation of cavitation phenomena. It summarizes the experimental observations of cavitation and reviews the modeling of cavity nucleation and growth. The article discusses the modeling of the cavity growth based on mesoscale and microscale under uniaxial versus multiaxial tensile-stress conditions. Mesoscale models incorporate the influence of local microstructure and texture on cavitation. The article outlines the descriptions of cavity coalescence and shrinkage. It also describes the simulation of the tension test to predict tensile ductility and to construct failure-mechanism maps.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005222
EISBN: 978-1-62708-187-0
Abstract
This article provides a detailed discussion on the causes of formation of shrinkage porosity and gas porosity along with the methods involved in eliminating them. It discusses the process of porosity formation and the factors affecting porosity formation, including alloy composition, external pressure, and cooling conditions.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005277
EISBN: 978-1-62708-187-0
Abstract
This article provides a discussion on ten rules for the effective production of reliable castings. These rules include good-quality melt, liquid front damage, liquid front stop, bubble damage, core blows, shrinkage damage, convection damage, segregation, residual stress, and location points.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005344
EISBN: 978-1-62708-187-0
Abstract
The International Committee of Foundry Technical Associations has identified seven basic categories of casting defects: metallic projections, cavities, discontinuities, defective surfaces, incomplete casting, incorrect dimension, and inclusions or structural anomalies. This article presents some of the common defects in each of the seven categories. It also discusses select case studies relevant to inclusions, cavities (gas porosity, shrinkage), and discontinuities (hot tearing, cold shut).
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005318
EISBN: 978-1-62708-187-0
Abstract
The designer of die casting tooling must balance the functional requirements of the part being cast with the cost, speed, and quality requirements of the process. In addition, attention must also be paid to the capacity and operating parameters of the casting machines being used and the need and economics of postprocessing. This article examines how design and materials selection address these diverse requirements of conventional die casting tooling. It focuses on the tooling for high-volume processes where the liquid or semisolid metal is forced into the die with high pressure and speed. The article also describes the functions of the tooling which involves supplying of molten alloy to the casting machine and injecting it into the die.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0009020
EISBN: 978-1-62708-187-0
Abstract
Casting offers a great amount of component design flexibility. This article discusses six casting design parameters that drive the geometry of casting design from a process standpoint. It provides information on the design of junctions and addresses considerations of secondary operations in design. The article describes the factors that control casting tolerances and presents specific tips for designing castings with uniform wall thickness, unequal sections, thin sections, economical coring, functional packaging, and core design. The article provides a framework for analyzing all manners of manufacturing as possible conversion candidates for casting. It concludes with a discussion on different metalcasting design projects.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003507
EISBN: 978-1-62708-180-1
Abstract
This article describes the general root causes of failure associated with wrought metals and metalworking. This includes a brief review of the discontinuities or imperfections that may be the common sources of failure-inducing defects in bulk working of wrought products. The article discusses the types of imperfections that can be traced to the original ingot product. These include chemical segregation; ingot pipe, porosity, and centerline shrinkage; high hydrogen content; nonmetallic inclusions; unmelted electrodes and shelf; and cracks, laminations, seams, pits, blisters, and scabs. The article provides a discussion on the imperfections found in steel forgings. The problems encountered in sheet metal forming are also discussed. The article concludes with information on the causes of failure in cold formed parts.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002464
EISBN: 978-1-62708-194-8
Abstract
This article discusses the most fundamental building-block level, atomic level, molecular considerations, intermolecular structures, and supermolecular issues. It contains a table that shows the structures and lists the properties of selected commodity and engineering plastics. The article describes the effects of structure on thermal and mechanical properties. It reviews the chemical, optical, and electrical properties of engineering plastics and commodity plastics. An explanation of important physical properties, many of which are unique to polymers, is also included. The factors that must be considered when processing engineering thermoplastics are discussed. These include melt viscosity and melt strength; crystallization; orientation, die swell, shrinkage, and molded-in stress; polymer degradation; and polymer blends.
Book Chapter
Book: Fractography
Series: ASM Handbook Archive
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000620
EISBN: 978-1-62708-181-8
Abstract
This article is an atlas of fractographs that helps in understanding the causes and mechanisms of fracture of cast aluminum alloys and in identifying and interpreting the morphology of fracture surfaces. The fractographs illustrate the brittle fracture, microvoid coalescence, fatigue striations, and microstructure of these alloys. The components considered include fractured sand-cast carrier trays, broken extension-housing yokes, helicopter tail-rotor drive assemblies, fractured bell-crank fittings, chain-hoist hooks, and automotive connecting rods.
Book Chapter
Book: Fractography
Series: ASM Handbook Archive
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000614
EISBN: 978-1-62708-181-8
Abstract
This article is an atlas of fractographs that helps in understanding the causes and mechanisms of fracture of maraging steels and in identifying and interpreting the morphology of fracture surfaces. The fractographs illustrate the tensile-test fracture, low-cycle fatigue fracture, fibrous fracture, crack-initiation zone, microvoid coalescence, fatigue-crack surface, hydrogen embrittlement, and fatigue striations of these steels.