Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-4 of 4
Temper embrittlement
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005938
EISBN: 978-1-62708-168-9
Abstract
Quench cracking is a brittle fracture phenomenon, and its occurrence depends not only on the stress changes but also on the mechanical characteristics of metals. Simulation of quenching processes has become possible in the analysis of quench cracking. This article commences with a discussion on the studies conducted to determine the origin of quench cracks, and then describes various test procedures for determining the susceptibility of quench cracking. It provides a description of the brittle fracture in terms of fracture mechanics and fracture toughness of quenched metals, and discusses the effects of impurities, hydrogen, and surface roughness on cracking. The article exemplifies simulation works applied to several successful cracking tests on cylindrical and complex-shaped steel parts.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005591
EISBN: 978-1-62708-174-0
Abstract
Electroslag welding (ESW) involves high energy input relative to other welding processes, resulting generally in inferior mechanical properties and specifically in lower toughness of the heat-affected zone. Electrogas welding (EGW) is a method of gas metal or flux cored arc welding, wherein an external gas is supplied to shield the arc, and molding shoes are used to confine the molten weld metal for vertical-position welding. This article describes the fundamentals, temperature relations, consumables, metallurgical and chemical reactions, and process development of ESW. The problems, quality control, and process applications of ESW and EGW are also discussed.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001371
EISBN: 978-1-62708-173-3
Abstract
Electroslag welding (ESW) and electrogas welding (EGW) are two related procedures that are used to weld thick-section materials in the vertical or near-vertical position between retaining shoes. This article discusses the fundamentals of the electroslag process in terms of heat flow conditions and metal transfer and weld pool morphology. It presents constitutive equations for welding current, voltage, and travel rate for ESW. The article describes the metallurgical and chemical reactions in terms of fusion zone compositional effects, weld metal inclusions, solidification structure, and solid-state transformations. It describes the electroslag process development and the applications of electroslag and electrogas processes. The article concludes with a discussion on weld defects, such as temper embrittlement, hydrogen cracking, and weld distortion.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001039
EISBN: 978-1-62708-161-0
Abstract
This article examines the embrittlement of iron and carbon steels. It describes compositional, processing, and service conditions that contribute to the problem and presents examples of how embrittlement influences mechanical properties. Embrittlement due to hydrogen is the most common form of embrittlement and influences the behavior and properties of nearly all ferrous alloys and many metals. The article explains why hydrogen embrittlement is so widespread and reviews the many types of damage it can cause. It also explores other forms of embrittlement, including metal-induced embrittlement, strain-age and aluminum nitride embrittlement, thermal embrittlement, quench cracking, 475 deg C and sigma phase embrittlement (in FeCr alloys), temper embrittlement, and embrittlement caused by neutron irradiation. In addition, the article covers stress-corrosion cracking along with properties and conditions that affect it, and the procedures to detect and evaluate it.