Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-19 of 19
Electrochemical measurement techniques
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006630
EISBN: 978-1-62708-213-6
Abstract
This article presents a detailed account of ion chromatography (IC). It begins by describing the principles of common separation modes in IC. This is followed by a section on the different modes of detection, namely suppressed conductivity detection, nonsuppressed conductivity detection, spectrophotometric detection, and electrochemical detection. Various separation modes in IC are then described. The article further provides information on various eluents species, analyte range, and sample preparation techniques in IC. It ends by providing information on the instrumentation and applications and future directions of IC.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006679
EISBN: 978-1-62708-213-6
Abstract
This article describes various methods of electrochemical analysis, namely coulometry, electrogravimetry, voltammetry, electrometric titration, and nanometer electrochemistry. The discussion covers the general uses, sample requirements, application examples, advantages, and limitations of these methods. Some of the factors pertinent to electrochemical cells are also provided. In addition, the article provides information on various potentiometric membrane electrodes used to quantify numerous ionic and nonionic species.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006113
EISBN: 978-1-62708-175-7
Abstract
This article reviews various test methods used for evaluating the corrosion resistance of powder metallurgy stainless steels. These include immersion testing, salt spray testing, and electrochemical testing. The article discusses the factors that affect corrosion resistance of sintered stainless steels: compaction-related factors, sintering-related factors, and effects of alloy composition. Corrosion resistance data for sintered stainless steels is provided.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005730
EISBN: 978-1-62708-171-9
Abstract
This article describes the two commonly used standardized tests for determining the mechanical properties of thermal spray coatings: hardness testing and tensile adhesion testing. It discusses the destructive and non-destructive methods of residual-stress measurement. Electrochemical testing methodologies include two distinctly different methods: direct and alternating current impedance techniques for assessing the corrosion resistance of coating attributes. The article also reviews the testing methods for determining thermomechanical and environmental stability of thermal barrier coatings. It discusses the wear testing methodologies that are standardized by ASTM, including the pin-on-disk, block-on-ring, dry sand/rubber wheel, erosion, metallographic apparatus abrasion, fretting wear, cavitation, reciprocating ball-on-flat, impact, and rolling contact fatigue test. The article concludes with a discussion on the methods of testing abradability and erosion resistance in abradable coatings.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004207
EISBN: 978-1-62708-184-9
Abstract
This article tabulates the chemical composition of iron-base, titanium-base, and cobalt-base alloys and illustrates the microstructures of these materials. It discusses the surface morphology and chemistry of oxide-film-covered alloys and provides insights into the interaction. The article illustrates the interfacial structure of a biomaterial surface contacting with the biological environment. It describes the corrosion behavior of stainless steel, cobalt-base alloy, and titanium alloys. The electrochemical methods used for studying metallic biomaterials corrosion are also discussed. The article concludes with information on the biological consequences of in vivo corrosion and biocompatibility.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004117
EISBN: 978-1-62708-184-9
Abstract
This article explores the use of the electrochemical and nonelectrochemical techniques for measuring the corrosion behavior of buried metals and the types of probes used. The electrical resistance technique is the main nonelectrochemical technique used for measuring corrosion rate. Electrochemical techniques discussed include linear polarization resistance, electrochemical noise, harmonic distortion analysis, electrochemical impedance spectroscopy, and hydrogen permeation. The principles of operation for the corrosion measuring techniques are described along with examples of their use in soils.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004168
EISBN: 978-1-62708-184-9
Abstract
Bridges and highways are core components of transportation system and range from pavements with earth, gravel, or stone covered by a thin bituminous surface course to a continually reinforced Portland cement concrete (PCC) roadway with or without a bituminous wear course. This article provides information on bridges and dowels and the reinforcement used in PCC roadways that suffer from corrosion. An overview is provided on the rise in awareness of the corrosion issues affecting bridges and highways. The chemistry and structure of concrete and its role as an electrolyte in promoting corrosion are also discussed. The article addresses reinforcement, including conventional, prestressed, cable stays, and corrosion-resistant reinforcement. It deals with the electrochemical methods for the inspection and corrosion control of embedded reinforcement. The article also reviews the corrosion of metal bridges and corrosion control, including the use of weathering steels and coating systems.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003653
EISBN: 978-1-62708-182-5
Abstract
This article focuses on the methods that are being developed for detecting and monitoring corrosion: electrochemical methods, electromagnetic or sound wave methods, fiber-optic technology, fluorescence methods, and the Diffracto Sight method. It reviews the importance of data management and the Corrosion Expert System. It concludes with information on the simulation and modeling for incorporating the mechanisms of corrosion prevention into military hardware systems design and operation.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003593
EISBN: 978-1-62708-182-5
Abstract
Metals and ceramics exposed to high-temperature salt solutions are susceptible to a form of corrosion caused by fused salts accumulating on unprotected surfaces. This article examines the electrochemistry of such hot corrosion processes, focusing on sodium sulfate systems generated by the combustion of fossil fuels. It explains how salt chemistry, including acid/base and oxidizing properties, affects corrosion rates and mechanisms. The article also provides information on electrochemical testing and explains how Pourbaix methods, normally associated with aqueous corrosion, can be used to study fused-salt corrosion.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003654
EISBN: 978-1-62708-182-5
Abstract
A variety of electrochemical techniques are used to detect and monitor material deterioration in service or in the field. This article describes the static or direct current measurements in a number of applications, including buried pipelines and storage tanks. It reviews the electrochemical impedance spectroscopy and electrochemical noise measurements in a laboratory, especially for the inspection of coatings.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003607
EISBN: 978-1-62708-182-5
Abstract
This article describes the various factors that affect the extent of corrosion resulting from galvanic coupling. The factors include galvanic series, polarization behavior, and geometric relationship of metals and alloys. The article briefly discusses the various modes of attack that lead to galvanic corrosion of anodic members. It also explains the three electrochemical techniques of screening tests for predicting galvanic corrosion. The electrochemical techniques comprise of potential measurements, current measurements, and polarization measurements. The article provides a detailed discussion on the performance of alloy groupings. It concludes with information on various control methods that reduce or eliminate galvanic-corrosion effects.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003662
EISBN: 978-1-62708-182-5
Abstract
Crevice corrosion is a form of localized corrosion that affects many alloys that normally exhibit passive behavior. This article discusses the frequently used crevice corrosion testing and evaluation procedures. These procedures include specific crevice corrosion tests, multiple-crevice assembly tests, cylindrical materials and products evaluation, component testing, electrochemical tests, and mathematical modeling.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003663
EISBN: 978-1-62708-182-5
Abstract
Galvanic corrosion, although listed as one of the forms of corrosion, is considered as a type of corrosion mechanism that is evaluated by modifying the tests used for conventional forms of corrosion. This article focuses on component testing, computer and physical scale modeling, and laboratory testing methods of evaluating galvanic corrosion. The laboratory tests fall into two categories, namely, electrochemical tests and specimen exposures.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003586
EISBN: 978-1-62708-182-5
Abstract
This article addresses electrochemical methods for instantaneous rate determination and threshold determination as well as nonelectrochemical methods that can determine incremental or cumulative rates of corrosion. Electrochemical methods for the study of galvanic corrosion rates and localized corrosion and evaluation of corrosion rates under paints are also discussed. The article describes nonelectrochemical methods that can determine incremental or cumulative rates of corrosion. Methods presented include polarization methods, polarization resistance methods, electrochemical impedance methods, frequency modulation methods, electrochemical noise resistance, potential probe methods, cyclic potentiodynamic polarization methods, potentiostatic and galvanostatic methods, electrochemical noise (EN) methods, scratch-repassivation method, and electrochemical impedance spectroscopy (EIS) techniques. Gravimetric determination of mass loss, electrical-resistance methods, magnetic methods, quartz crystal microbalance method, solution analysis methods, and metrological methods are nonelectrochemical methods. The article presents an electrochemical test that examines the susceptibility of stainless steel alloys to intergranular corrosion.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003687
EISBN: 978-1-62708-182-5
Abstract
This article discusses the various factors that affect the corrosion performance of electroplated coatings. It describes the effects of environment and the deposition process on substrate coatings. The article provides a discussion on the electrochemical techniques capable of predicting the corrosion performance of a plated part. It reviews the designs of coating systems for optimal protection of the substrate. The article also discusses controlled weathering tests and accelerated tests used to predict and determine the relative durability of the coating.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003644
EISBN: 978-1-62708-182-5
Abstract
This article reviews the fundamentals of electrochemical corrosion test methods. The features and requirements of the instrumentation needed for an electrochemical test are briefly discussed. The article provides a discussion on the various electrochemical techniques and tests available for laboratory studies of corrosion phenomena. The techniques and tests include no-applied-signal tests, small-signal polarization tests, large-signal polarization tests, scanning electrode techniques, and miscellaneous techniques.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003647
EISBN: 978-1-62708-182-5
Abstract
Corrosion resulting from the presence and activities of microbes on metals and metal alloys is generally referred to as microbiologically influenced corrosion (MIC). This article describes the biofilm formation and structure and microbial processes influencing corrosion. It also discusses the electrochemical techniques used to study and monitor MIC and presents examples of their applications to MIC.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001741
EISBN: 978-1-62708-178-8
Abstract
Voltammetry is the study of the current voltage relationships observed when electroactive species in solution are subject to oxidation or reduction at electrodes under carefully controlled conditions. This article describes the basic principle of voltammetry performed using the dropping mercury electrode (polarography). It discusses the various methods of voltammetry, namely, linear sweep voltammetry, cyclic voltammetry, and stripping voltammetry that are carried out with different electrode material. The article also explores the modern instrumentation and developments achieved in voltammetry, and provides an outline of additional data, such as values of the formation, or stability, and constants of complexes formed by shifting the half-wave potential, which can be obtained by voltammetry. Additionally, the article provides a brief account of the applications of voltammetry.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001744
EISBN: 978-1-62708-178-8
Abstract
Controlled-potential coulometry is a highly precise and accurate method primarily used for major constituent analysis of analyte substances such as alloys, compounds, nonmetallic materials and organic compounds. This article illustrates the apparatus required for controlled-potential coulometry, and provides information on its techniques and applications. It contains a table that lists the metals for which accurate methods have been developed and the basic electrochemistry of the procedures. The article explains that gold and uranium are the elements that are determined frequently in various sample types.