Skip Nav Destination
Close Modal
By
Chris Schade
By
M.A.J. Somers, T.L. Christiansen
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-2 of 2
Thermal decomposition
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Chemical and Electrolytic Methods of Powder Production
Available to PurchaseBook: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006087
EISBN: 978-1-62708-175-7
Abstract
This article provides a discussion on the process descriptions, processing conditions, and processing variables of the most common chemical methods for metal powder production. These methods include oxide reduction, precipitation from solution, and thermal decomposition. Methods such as precipitation from salt solution and gas, chemical embrittlement, hydride decomposition, and thermite reactions are also discussed. The article also discusses the methods used to produce powders electrolytically and the types of metal powders produced. The physical and chemical characteristics of these powders are also reviewed.
Book Chapter
Low-Temperature Surface Hardening of Stainless Steel
Available to PurchaseSeries: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005959
EISBN: 978-1-62708-168-9
Abstract
Low-temperature surface hardening is mostly applied to austenitic stainless steels when a combination of excellent corrosion performance and wear performance is required. This article provides a brief history of low-temperature surface hardening of stainless steel, followed by a discussion on physical metallurgy, including crystallographic identity, thermal stability and decomposition, nitrogen and carbon solubility in expanded austenite, and diffusion kinetics of interstitials. It provides a description of low-temperature nitriding and nitrocarburizing processes for primarily austenitic and, to a lesser extent, other types of stainless steels along with practical examples and industrial applications of these steels.