Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 69
Localized corrosion
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006823
EISBN: 978-1-62708-329-4
Abstract
This article illustrates the use of the American Petroleum Institute (API) 579-1/ASME FFS-1 fitness-for-service (FFS) code (2020) to assess the serviceability and remaining life of a corroded flare knockout drum from an oil refinery, two fractionator columns affected by corrosion under insulation in an organic sulfur environment, and an equalization tank with localized corrosion in the shell courses in a chemicals facility. In the first two cases, remaining life is assessed by determining the minimum thickness required to operate the corroded equipment. The first is based on a Level 2 FFS assessment, while the second involves a Level 3 assessment. The last case involves several FFS assessments to evaluate localized corrosion in which remaining life was assessed by determining the minimum required thickness using the concept of remaining strength factor for groove-like damage and evaluating crack-like flaws using the failure assessment diagram. Need for caution in predicting remaining life due to corrosion is also covered.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006837
EISBN: 978-1-62708-329-4
Abstract
Because of the tough engineering environment of the railroad industry, fatigue is a primary mode of failure. The increased competitiveness in the industry has led to increased loads, reducing the safety factor with respect to fatigue life. Therefore, the existence of corrosion pitting and manufacturing defects has become more important. This article presents case histories that are intended as an overview of the unique types of failures encountered in the freight railroad industry. The discussion covers failures of axle journals, bearings, wheels, couplers, rails and rail welds, and track equipment.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006783
EISBN: 978-1-62708-295-2
Abstract
Corrosion is the electrochemical reaction of a material and its environment. This article addresses those forms of corrosion that contribute directly to the failure of metal parts or that render them susceptible to failure by some other mechanism. Various forms of corrosion covered are galvanic corrosion, uniform corrosion, pitting, crevice corrosion, intergranular corrosion, selective leaching, and velocity-affected corrosion. In particular, mechanisms of corrosive attack for specific forms of corrosion, as well as evaluation and factors contributing to these forms, are described. These reviews of corrosion forms and mechanisms are intended to assist the reader in developing an understanding of the underlying principles of corrosion; acquiring such an understanding is the first step in recognizing and analyzing corrosion-related failures and in formulating preventive measures.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006788
EISBN: 978-1-62708-295-2
Abstract
This article focuses on the mechanisms of microbiologically influenced corrosion as a basis for discussion on the diagnosis, management, and prevention of biological corrosion failures in piping, tanks, heat exchangers, and cooling towers. It begins with an overview of the scope of microbial activity and the corrosion process. Then, various mechanisms that influence corrosion in microorganisms are discussed. The focus is on the incremental activities needed to assess the role played by microorganisms, if any, in the overall scenario. The article presents a case study that illustrates opportunities to improve operating processes and procedures related to the management of system integrity. Industry experience with corrosion-resistant alloys of steel, copper, and aluminum is reviewed. The article ends with a discussion on monitoring and preventing microbiologically influenced corrosion failures.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006492
EISBN: 978-1-62708-207-5
Abstract
Although aluminum alloys are inherently corrosion resistant, there are many operating environments where they require additional protection. This article describes the conditions under which aluminum is prone to corrode and explains how to prevent it through the addition of conversion coatings and paints. It addresses some of the more common corrosion mechanisms, including corrosion driven by pH extremes, pitting corrosion, crevice corrosion, galvanic corrosion, and filiform corrosion. The article also describes in-plant as well as field application procedures for cleaning and coating, and discusses the advantages and limitations of the various materials and chemicals used.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006354
EISBN: 978-1-62708-192-4
Abstract
This article is concerned with gear tooth failures influenced by friction, lubrication, and wear, and especially those failure modes that occur in wind-turbine components. It provides a detailed discussion on wear (including adhesion, abrasion, polishing, fretting, and electrical discharge), scuffing, and Hertzian fatigue (including macropitting and micropitting). Details for obtaining high lubricant specific film thickness are presented. The article describes the selection criteria for lubricants, such as oil, grease, adhesive open gear lubricant, and solid lubricants. It discusses the applications of oil and gear lubricants and the types of standardized gear tests. The article presents some recommendations for selecting lubricants and lubricant viscosity for enclosed gear. It provides some examples of failure modes that commonly occur on gears and bearings in wind turbine gearboxes.
Book Chapter
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006349
EISBN: 978-1-62708-179-5
Abstract
Cast irons provide excellent resistance to a wide range of corrosion environments when properly matched with that service environment. This article presents basic parameters to be considered before selecting cast irons for corrosion services. Alloying elements can play a dominant role in the susceptibility of cast irons to corrosion attack. The article discusses the various alloying elements, such as silicon, nickel, chromium, copper, and molybdenum, that enhance the corrosion resistance of cast irons. Cast irons exhibit the same general forms of corrosion as other metals and alloys. The article reviews the various forms of corrosions, such as graphitic corrosion, fretting corrosion, pitting and crevice corrosion, intergranular attack, erosion-corrosion, microbiologically induced corrosion, and stress-corrosion cracking. It discusses the four general categories of coatings used on cast irons to enhance corrosion resistance: metallic, organic, conversion, and enamel coatings.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006028
EISBN: 978-1-62708-172-6
Abstract
This article focuses on those areas of coatings technology where silicon-based technology (SBT) is the primary enabling technology and where SBT is used as an additive to provide unique properties to the coating film. It describes the chemistry and the uses of alkoxy silanes. The uses of silicates, siliconates, silicone fluids, and silicone resins in coatings are reviewed. The article discusses the various applications of SBT, namely, primers, heat-resistant coatings, industrial maintenance coatings, hygienic coatings, and abrasion-resistant coatings, and for marine biofouling control. It also provides information on the benefits of silicon-base additives.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006013
EISBN: 978-1-62708-172-6
Abstract
This article focuses on marine coatings associated with protecting commercial and military vessels. It provides detailed information on the common issues and requirements encountered when coating ballast tanks, freeboard, topside, and decks of the vessel. The article describes the advent of ultra-high solids coatings technology, and reviews the marine-specific coatings such as antifouling and their mechanisms and common failure modes.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006059
EISBN: 978-1-62708-172-6
Abstract
This article provides information on the municipal wastewater system components such as piping, pump stations, headworks, clarifiers, aeration structures, digesters, biosolids dewatering equipment, and sludge stabilization. It explains the major corrosion damage mechanisms to which those component parts of the system are exposed. It presents useful guidelines for selecting and using protective coatings in municipal sewerage collection systems and water reclamation facilities in wastewater treatment plants. The article includes annotated flow diagrams of a wastewater collection system, wastewater treatment plants, and spreadsheets listing the most widely used generic coating systems by structure and substrate material. It concludes with a section on quality watchouts when selecting or using protective coatings in municipal wastewater systems.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005762
EISBN: 978-1-62708-165-8
Abstract
Carbonitriding is a modified form of carburizing that involves the introduction and diffusion of atomic nitrogen into the surface steel during carburization. This article discusses the composition, depth, and hardenability of a carburized case, and demonstrates how to control atmosphere in batch and continuous furnaces. It discusses the most important considerations in the selection of carbonitriding temperature. The article also describes the processing factors for minimizing retained austenite in the carbonitrided case. Hardness testing and carbonitriding of powder metallurgy parts, quenching and tempering of carbonitrided steel parts, and applications of carbonitriding are also covered in the article.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005653
EISBN: 978-1-62708-198-6
Abstract
This article reviews the corrosion interactions between biomedical alloys, in particular iron-base, titanium-base, and cobalt-base alloys, in complex geometries and in applications where there are significant cyclic stresses and potential for wear and fretting motion. It discusses the nature of these metal surfaces and their propensity for corrosion reactions when combined with similar or different alloys in complex restrictive environments within the human body and under loading conditions. The article describes the factors that influence mechanically assisted crevice corrosion. It reviews the tests developed to investigate the aspects of mechanically assisted corrosion of metallic biomaterials: the scratch test and the in vitro fretting corrosion test.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005229
EISBN: 978-1-62708-187-0
Abstract
Homogenization, in a broad sense, refers to the processes designed to achieve uniform distribution of solutes or phases in a given matrix. This article addresses the root cause for inhomogeneities in cast components. It is nearly a standard industrial practice to homogenize alloys before thermomechanical processing. The article lists the objectives of homogenization and benefits of homogenization treatments. The benefits include increased resistance to pitting corrosion, increased resistance to stress-corrosion cracking, improved ductility, and uniform precipitate distribution during subsequent aging. The article provides a schematic illustration of an energy-dispersive X-ray spectroscope (EDS) scattered data of solute distributions across a dendrite due to microsegregation of chromium and molybdenum. It concludes with information on the computational modeling for simulation of microsegregation of chromium and molybdenum.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004213
EISBN: 978-1-62708-184-9
Abstract
This article describes the mechanisms of differential corrosion cells corrosion, microbiologically influenced corrosion, and stray direct current corrosion. It discusses the most common causes and contributing factors for corrosion and stress-corrosion cracking, as well as prevention, mitigation, detection, and repair processes.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004162
EISBN: 978-1-62708-184-9
Abstract
This article discusses the commonly encountered forms of automotive body corrosion. The corrosion forms include general or uniform corrosion, cosmetic or under-film corrosion, galvanic corrosion, crevice corrosion, poultice or under-deposit corrosion, and pitting corrosion. Corrosion-resistant sheet metals, such as electrogalvanized steel, hot dip galvanized steel, and hot dip galvannealed steel, are reviewed. The article provides information on the paint and sealant systems for corrosion control in automotive body applications.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004152
EISBN: 978-1-62708-184-9
Abstract
This article addresses the major heat-transfer components of the water-steam loop of a power plant. It describes the various types of condensers, including water-cooled condensers and air-cooled condensers. The article explains the corrosion mechanisms encountered in the condensers, including erosion-corrosion, galvanic corrosion, and pitting corrosion. It discusses the types of deaerators and deals with their corrosion problems. The article provides a discussion on two types of feedwater heaters: channel feedwater heaters and header feedwater heaters. It summarizes the corrosion problems associated with common feedwater heater tube materials.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004153
EISBN: 978-1-62708-184-9
Abstract
This article begins with a discussion on the components and importance of flue gas desulfurization (FGD) technology used in power plant for pollution control. It further discusses the corrosion problems encountered in different operating zones of FGD system and the major forms of corrosive attack encountered in those zones, including crevice corrosion, pitting corrosion, and acid attack. The article concludes with information on the materials selection and design features for minimizing the possibility of corrosion.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004206
EISBN: 978-1-62708-184-9
Abstract
This article reviews the understanding of corrosion interactions between alloys in complex geometries and in applications where there are significant cyclic stresses and potential for wear and fretting motion. These alloys include iron-base, titanium-base, and cobalt-base alloys. The article discusses the surface characteristics and electrochemical behavior of metallic biomaterials. It summaries the clinical context for mechanically assisted corrosion and describes mechanically assisted crevice corrosion. There have been several tests developed to investigate aspects of mechanically assisted corrosion. The article also explains the scratch test and the in vitro fretting corrosion test.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004154
EISBN: 978-1-62708-184-9
Abstract
This article briefly describes water and steam chemistry, which influence the effect of corrosion in boilers. The appropriate control measures to prevent corrosion in boilers are also presented. The article provides a discussion on the common causes of fluid-side corrosion such as flow-accelerated corrosion, oxygen pitting, chelant corrosion, caustic corrosion, acid corrosion, organic corrosion, phosphate corrosion, hydrogen damage, and corrosion-assisted cracking.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004163
EISBN: 978-1-62708-184-9
Abstract
Steel automotive exhaust systems suffer from various forms of corrosion. This article illustrates exhaust system components with typical upper metal skin temperatures and alloys of construction. It discusses high-temperature corrosion of automotive exhaust systems, including oxidation, hot salt attack, and thermal fatigue. The article describes the various forms of corrosion which occur at the cold end of an exhaust system. The forms of cold end exhaust corrosion, including condensate pitting corrosion, exterior salt pitting, crevice corrosion, intergranular corrosion, and galvanic corrosion.
1