Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-8 of 8
Hot corrosion
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004163
EISBN: 978-1-62708-184-9
Abstract
Steel automotive exhaust systems suffer from various forms of corrosion. This article illustrates exhaust system components with typical upper metal skin temperatures and alloys of construction. It discusses high-temperature corrosion of automotive exhaust systems, including oxidation, hot salt attack, and thermal fatigue. The article describes the various forms of corrosion which occur at the cold end of an exhaust system. The forms of cold end exhaust corrosion, including condensate pitting corrosion, exterior salt pitting, crevice corrosion, intergranular corrosion, and galvanic corrosion.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004158
EISBN: 978-1-62708-184-9
Abstract
The corrosion issues in the compressor, combustor and turbine sections of industrial gas turbines used in steam production generally depend on the quality of the fuel, air, and water used in the engine than on the specific industrial application. This article focuses on the forms of corrosion and their preventive measures in the compressor, combustor and turbine sections of a steam turbine. The compressor section mainly suffers from aqueous corrosion; while in case of the combustor and turbine sections, which are made of nickel-base superalloys, high-temperature environmental attack in the form of high-temperature oxidation and hot corrosion are predominant. The effect of high-temperature oxidation and hot corrosion on the mechanical properties of superalloys is also discussed.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003837
EISBN: 978-1-62708-183-2
Abstract
This article reviews the corrosion behavior of intermetallics for the modeling of the corrosion processes and for devising a strategy to create corrosion protective systems through alloy and coating design. Thermodynamic principles in the context of high-temperature corrosion and information on oxidation; sulfidation; hot corrosion of NiAl-, FeAl-, and TiAl-based intermetallics; and silicides are included. The article explores the thermodynamic consideration, ordering influencing kinetics, stress-cracking corrosion, and hydrogen embrittlement of aqueous corrosion. It also explains the practical issues dealing with the corrosion problems.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0004050
EISBN: 978-1-62708-183-2
Abstract
This article describes the specific features and mechanisms of oxidation in thermal spray coatings. It discusses the two forms of hot corrosion in sulfur-containing combustion, namely high-temperature hot corrosion and low-temperature hot corrosion. The article reviews the behavior of corrosion-resistant coatings in boilers. The effects of high-temperature corrosion in waste incinerators are detailed. The article also examines the effects of erosion-corrosion in fluidized bed combustion boilers.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003593
EISBN: 978-1-62708-182-5
Abstract
Metals and ceramics exposed to high-temperature salt solutions are susceptible to a form of corrosion caused by fused salts accumulating on unprotected surfaces. This article examines the electrochemistry of such hot corrosion processes, focusing on sodium sulfate systems generated by the combustion of fossil fuels. It explains how salt chemistry, including acid/base and oxidizing properties, affects corrosion rates and mechanisms. The article also provides information on electrochemical testing and explains how Pourbaix methods, normally associated with aqueous corrosion, can be used to study fused-salt corrosion.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003611
EISBN: 978-1-62708-182-5
Abstract
When metal is exposed to an oxidizing gas at elevated temperature, corrosion can occur by direct reaction with the gas, without the need for the presence of a liquid electrolyte. This type of corrosion is referred to as high-temperature gaseous corrosion. This article describes the various forms of high-temperature gaseous corrosion, namely, high-temperature oxidation, sulfidation, carburization, corrosion by hydrogen, and hot corrosion.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003555
EISBN: 978-1-62708-180-1
Abstract
High temperature corrosion may occur in numerous environments and is affected by factors such as temperature, alloy or protective coating composition, time, and gas composition. This article explains a number of potential degradation processes, namely, oxidation, carburization and metal dusting, sulfidation, hot corrosion, chloridation, hydrogen interactions, molten metals, molten salts, and aging reactions including sensitization, stress-corrosion cracking, and corrosion fatigue. It concludes with a discussion on various protective coatings, such as aluminide coatings, overlay coatings, thermal barrier coatings, and ceramic coatings.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003142
EISBN: 978-1-62708-199-3
Abstract
This article discusses corrosion resistance of titanium and titanium alloys to different types of corrosion, including galvanic corrosion, crevice corrosion, stress-corrosion cracking (SCC), erosion-corrosion, cavitation, hot salt corrosion, accelerated crack propagation, and solid and liquid metal embrittlement. A short section discusses the addition of alloys that can improve the corrosion resistance of titanium.