Skip Nav Destination
Close Modal
By
Robert H. Heidersbach, James Brandt, David Johnson, John S. Smart, III, John S. Smart
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-12 of 12
Waterside corrosion
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.9781627083294
EISBN: 978-1-62708-329-4
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006691
EISBN: 978-1-62708-210-5
Abstract
The aluminum alloy 4043 is recommended as a filler metal when resistance to salt water corrosion is required, especially when welding such aluminum alloys as 5052, 6061, and 6063. This datasheet provides information on key alloy metallurgy, and processing effects on tensile properties of this 4xxx series alloy.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004100
EISBN: 978-1-62708-184-9
Abstract
This article describes the various environments affecting corrosion performance, corrosion protection, and corrosion control. These include freshwater environments, marine environments, and underground environments. The article provides information on corrosion in military environments and specialized environments, representing less-well-known environments with more limited applications.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004124
EISBN: 978-1-62708-184-9
Abstract
High-temperature exposure of materials occurs in many applications such as power plants (coal, oil, natural gas, and nuclear), land-based gas turbine and diesel engines, gas turbine engines for aircraft, marine gas turbine engines for shipboard use, waste incineration, high-temperature fuel cells, and missile components. This article discusses high-temperature corrosion in boilers, diesel engines, gas turbines, and waste incinerators. Boilers are affected by stress rupture failures, waterside corrosion failures, fireside corrosion failures, and environmental cracking failures. Contamination of combustion fuel in diesel engines can cause high-temperature corrosion. Gas turbine engines are affected by hot corrosion. Refractory-lined incinerators and alloy-lined incinerators are discussed. The article provides case studies for each component failure.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004105
EISBN: 978-1-62708-184-9
Abstract
This article discusses the general properties of ocean water and their effects on corrosion. It describes the major and minor features of the ocean water on corrosion, including the effects of variability, pollutants, and fouling organisms. Effects of water flow velocity on marine corrosion are also reviewed.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004106
EISBN: 978-1-62708-184-9
Abstract
Several factors contribute to marine-atmospheric corrosion with the local environment being the single most important factor. Therefore, assessing a local environment, which is essential to reduce the gross expenditure, is assisted by modeling of the local environment and by a set of corrosion standards proposed by the International Standards Organization (ISO). This article focuses on the important variables associated with atmospheric corrosion in marine atmospheres, namely, moisture, temperature, winds, airborne contaminants, alloy content, location, and biological organisms along with their corresponding assessing methods. It also examines the ISO CORRAG program for modeling the corrosion rate of atmospheric corrosion that is represented as equations modeling.
Book Chapter
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004109
EISBN: 978-1-62708-184-9
Abstract
Cathodic protection (CP) is an electrochemical means of corrosion control widely used in the marine environment. This article discusses two types of CP systems: impressed current systems and sacrificial anode (passive) systems. It describes the anode materials used in these systems and the CP criteria. The article examines the design considerations and procedures involved in the CP of marine pipelines, offshore structures, and ship hulls. An illustration of sacrificial anode calculation is also provided.
Book Chapter
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003796
EISBN: 978-1-62708-183-2
Book Chapter
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0006541
EISBN: 978-1-62708-183-2
Abstract
This guide rates the compatibility of dissimilar structural materials joined together for service in seawater, marine atmosphere, or industrial atmosphere. It contains a table that indicates the material code and most generally effective surface treatment typically used to reduce corrosion of bare metals.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003675
EISBN: 978-1-62708-182-5
Abstract
This article begins with a discussion on the corrosion characteristics of unalloyed magnesium and two major magnesium alloy systems. It shows the effects of iron and 13 other elements on the saltwater corrosion performance of magnesium in binary alloys with increasing levels of the individual elements. The article illustrates the effect of increasing iron, nickel, and copper contamination on the standard ASTM B 117 salt-spray performance of the die-cast AZ91 test specimens as compared to the range of performance observed for cold-rolled steel and die-cast aluminum alloy 380 samples. It discusses the effect of heat treating and cold working on the corrosion rates of the die-cast AZ91 alloy. The article concludes with a description on the causes of corrosion failures in magnesium alloys.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001816
EISBN: 978-1-62708-180-1
Abstract
This article explains the main types and characteristic causes of failures in boilers and other equipment in stationary and marine power plants that use steam as the working fluid with examples. It focuses on the distinctive features of each type that enable the failure analyst to determine the cause and suggest corrective action. The causes of failures include tube rupture, corrosion or scaling, fatigue, erosion, and stress-corrosion cracking. The article also describes the procedures for conducting a failure analysis.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003105
EISBN: 978-1-62708-199-3
Abstract
Corrosion of metals is defined as deterioration caused by chemical or electrochemical reaction of the metal with its environment. This article provides information on corrosion of iron and steel by aqueous and nonaqueous media. It discusses the corrosive environments of carbon and alloy steels, namely atmospheric corrosion, soil corrosion, corrosion in fresh water and seawater. The article describes the corrosion process in concrete, which tends to create conditions that increase the rate of attack. The focus is on the stress-corrosion cracking of steels; an environmentally induced crack propagation that results from the combined interaction of mechanical stress and corrosion reactions. The article tabulates a guide on corrosion prevention for carbon steels in various environments. It also discusses protection methods of steel from corrosion, including coatings, such as temporary protection, cleaning, hot dip coating, electroplating, thermal spray coatings, conversion coatings, thin organic coatings, and inhibitors.