Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 22
Grain boundaries
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006509
EISBN: 978-1-62708-207-5
Abstract
Heat treatment of aluminum alloys frequently refers to the heat treatable aluminum alloys that can be strengthened by solution treatment, quenching, and subsequent hardening. This article introduces the general metallurgy of strengthening aluminum alloys by heat treatment. It discusses various heat treatable alloying elements, such as copper, chromium, iron, magnesium, silicon, zinc, and lithium. The article describes the age-hardening treatments and generalized precipitation sequence for aluminum alloys. It reviews the solution heat treatment in terms of solution heating time and temperature, as well as high-temperature oxidation. The article also discusses quench sensitivity, vacancy loss, grain-boundary precipitates, and quench delay for the heat treatment of aluminum. It concludes with a discussion on the deformation of aluminum alloys prior to aging.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006388
EISBN: 978-1-62708-192-4
Abstract
This article begins by describing the designations of cast and wrought aluminum alloys. It explains the effects of main alloying elements in aluminum alloys: boron, chromium, copper, iron, lithium, magnesium, manganese, nickel, phosphorus, silicon, sodium, strontium, titanium, and zinc. The article describes the microstructure of cast and wrought aluminum alloys and the various strengthening mechanisms, including solid solution, grain refinement, strain or work hardening, precipitation (or age) hardening, and dispersoid strengthening. The article explicates the tribological behavior of aluminum alloys, aluminum-base composites, and metal-matrix composites. It presents the effect of material-related parameters and external factors on wear behavior and transitions of aluminum-silicon alloys. The article also presents the most important factors affecting the dry sliding wear behavior of particle-reinforced aluminum-base composites against a steel counterface.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006117
EISBN: 978-1-62708-175-7
Abstract
Sintering is a thermal treatment process in which a powder or a porous material, already formed into the required shape, is converted into a useful article with the requisite microstructure. Sintering can be classified as solid-state, viscous, liquid-phase, and pressure-assisted (or pressure) sintering. This article provides information on the mechanisms and theoretical analysis of sintering and focuses on the types, mechanisms, process and microstructural variables, computer simulation, stages, and fundamentals of densification and grain growth of solid-state sintering and liquid-phase sintering. It describes the models for viscous sintering and the methods used in pressure-assisted sintering, namely, uniaxial hot pressing, hot isostatic pressing, sinter forging, and spark plasma sintering.
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005982
EISBN: 978-1-62708-168-9
Abstract
This article describes the microstructure, properties, and performance of carburized steels, and elucidates the microstructural gradients associated with carbon and hardness gradients. It provides information on case depth measurement, the factors affecting case depth, and the formation and causes of microcracks. The article discusses the effects of alloying elements on hardenability, the effects of excessive retained austenite and massive carbides on fatigue resistance, the effects of residual stresses and internal oxidation on fatigue performance of carburized steels. In addition, the causes of intergranular fracture at austenite grain boundaries and their prevention methods are explored. The article also describes the major mechanisms of bending fatigue crack initiation in carburized steels.
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005948
EISBN: 978-1-62708-168-9
Abstract
Maraging steels are highly alloyed low-carbon iron-nickel martensite steels that possess an excellent combination of strength and toughness superior to that of most carbon-hardened steels. This article provides a detailed account of the formation of martensite in maraging steels. It discusses the heat treatment of these steels, namely, aging, solution annealing, age hardening, and nitriding. Their hardening during aging has been attributed to two different mechanisms: short-range ordering and precipitation. The article concludes with a discussion on the grain refinement using thermal cycling and transformation-induced plasticity maraging methods.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005507
EISBN: 978-1-62708-197-9
Abstract
Grain boundaries are interfaces between crystallites of the same phase but different crystallographic orientation. They can be characterized as being low angle or high angle. This article discusses the measurements of grain-boundary energy with a brief summary of different schemes for measuring grain-boundary surface tension. The atomistic simulations of grain-boundary energy, measurement of grain-boundary migration and the techniques used to monitor grain-boundary migration are reviewed. Several considerations and effects influencing the computation of grain-boundary mobility are also discussed.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005422
EISBN: 978-1-62708-196-2
Abstract
This article reviews network models and their applications for the simulation of various physical phenomena related to grain-boundary migration. It discusses the steps involved in the implementation of two and three-dimensional network models, namely, acquisition and discretization of the microstructure, formulation of the equation of motion, and implementation of the topological transformations. The article presents examples that illustrate the simulation of physical phenomena to demonstrate the predictive power and flexibility of network models.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005302
EISBN: 978-1-62708-187-0
Abstract
Grain refinement in aluminum casting alloys tends to reduce the amount of porosity and the size of the pores and to improve mechanical properties, especially fatigue strength. This article provides information on measurement of grain size in alloys and describes the mechanisms of grain refinement in aluminum casting alloys. It reviews the use of boron and titanium as a grain refiner for aluminum casting alloys. The article discusses the best practices for grain refinement in various aluminum casting alloys. These include aluminum-silicon casting alloys, aluminum-silicon-copper casting alloys, aluminum-silicon-copper casting alloys, aluminum-zinc-magnesium casting alloys, and aluminum-magnesium casting alloys. The article also examines the benefits of grain refinement in aluminum casting alloys.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003993
EISBN: 978-1-62708-185-6
Abstract
This article provides a discussion on forging methods, melting procedures, forging equipment, forging practices, grain refinement, and critical factors considered in forging process. It describes the different types of solid-solution-strengthened and precipitation-strengthened superalloys, namely, iron-nickel superalloys, nickel-base alloys, cobalt-base alloys, and powder alloys. The article discusses the microstructural mechanisms during hot deformation and presents processing maps for various superalloys. It concludes with a discussion on heat treatment of wrought heat-resistant alloy forgings.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003995
EISBN: 978-1-62708-185-6
Abstract
Thermomechanical processing (TMP) refers to various metal forming processes that involve careful control of thermal and deformation conditions to achieve products with required shape specifications and good properties. This article describes TMP methods in producing hot-rolled steel and reviews how improvements in the strength and toughness depend on the synergistic effect of microalloy additions and on carefully controlled thermomechanical conditions. It discusses TMP variables and the general distinctions between conventional hot rolling and common types of controlled-rolling schedules. The article describes the metallurgical processes in grain refinement of austenite steel by hot working, such as recovery and recrystallization and strain-induced transformation. The grain refinement in high strength low alloy steel by alloy addition is also discussed. The article provides an outline on the key stages of deformation, and the required metallurgical information at each of these stages.
Book Chapter
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004018
EISBN: 978-1-62708-185-6
Abstract
Plastic deformation can occur in metals from various mechanisms, such as slip, twinning, diffusion creep, grain-boundary sliding, grain rotation, and deformation-induced phase transformations. This article emphasizes on the mechanism of slip and twinning under cold working conditions. It discusses the factors on which the structures developed during plastic deformation depend. These factors include crystal structure, amount of deformation, composition, deformation mode, and deformation temperature and rate. The article illustrates the microstructural features that appear after substantial deformation when revealed through metallographic investigation.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003728
EISBN: 978-1-62708-177-1
Abstract
This article describes the development of heat-resistant titanium-base alloys and their classification into several microstructure categories based on their strengthening mechanisms. It explains the phase transformation in titanium-aluminum-base alloys and two peritectic reactions that take place in the titanium-aluminum system. The article also describes two approaches for controlling the orientation of the high-temperature alpha phase to achieve the required lamellar orientation by directional solidification in order to improve the strength and ductility of titanium-aluminum alloys. One approach is by seeding the alpha phase in the alloys, and the other is without seeding, by controlling the solidification path of alloys through appropriate alloying. The article discusses the grain refinement technique used to improve the ductility of cast titanium-aluminum alloys to a level of above 1" at room temperature and reasonable room temperature ductility in the as-cast condition. Finally, it provides information on the microstructures produced through various near-net shape manufacturing processes.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003781
EISBN: 978-1-62708-177-1
Abstract
This article discusses the specimen preparation techniques for zinc and its alloys and zinc-coated specimens, namely, sectioning, mounting, grinding and polishing, and etching. It describes the characteristics of lead, cadmium, iron, copper, titanium, aluminum, magnesium, and tin, which are present in the microstructure of zinc alloys. The article also provides information on microexamination that helps to determine the dendrite arm spacing, as well as the grain size, grain boundaries, and grain counts.
Book Chapter
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003784
EISBN: 978-1-62708-177-1
Abstract
Pure metals normally solidify into polycrystalline masses, but it is relatively easy to produce single crystals by directional solidification from the melt. This article illustrates the dislocations present in a metal crystal, which is often polygonized into sub-boundaries during grain growth after solidification. It provides a description of small-angle and large-angle grain boundaries of polycrystalline metals.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003744
EISBN: 978-1-62708-177-1
Abstract
This article describes the mechanisms involved in creating texture for various metal-fabrication processes, namely, solidification, deformation, recrystallization and grain growth, thin-film deposition, and imposition of external magnetic fields. It discusses two experimental and analytical approaches for experimental determination of texture: one using classical diffraction and pole figure measurement techniques and the other using individual orientation measurements. The article also provides information on microtexture, grain-boundary character, and texture gradients. It concludes with information on texture evolution through modeling.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002410
EISBN: 978-1-62708-193-1
Abstract
This article discusses fracture, fatigue, and creep of nickel-base superalloys with additional emphasis on directionally solidified and single-crystal applications. It analyzes the physical metallurgy of these alloys. The effects of grain boundary and grain size on failure are summarized. The article also discusses the effects of microstructure and extrinsic parameters on fatigue crack propagation (FCP). It details the modeling of FCP rates and creep and creep-fatigue crack growth rates.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001348
EISBN: 978-1-62708-173-3
Abstract
This article reviews quantifying adhesion, bonding, and interfacial characterization and strength in a solid-state welding process. It discusses metal-metal configurations and provides information on experimental work carried out in measuring the mechanical properties of interfaces based on theoretical analysis. A discussion on the properties affecting adhesion is also provided.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001463
EISBN: 978-1-62708-173-3
Abstract
This article discusses the metallurgical aspects of underwater welds. It describes the microstructural development, which mainly includes three types of ferrite associated with low carbon steel weld metal: grain-boundary ferrite, sideplate ferrite, and acicular ferrite. The article explains the factors that affect heat-affected zone (HAZ) cracking. These include hydrogen from the weld pool, microstructures that develop in the HAZ, and stress levels that develop in the weld joint. The article describes the welding practices that can reduce residual stresses. It explains the effect of water pressure on the formation of porosity in underwater gravity welding. The article concludes with a discussion on the practical applications of underwater welding.
Book Chapter
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000601
EISBN: 978-1-62708-181-8
Abstract
This article is an atlas of fractographs that helps in understanding the causes and mechanisms of fracture of pure irons and in identifying and interpreting the morphology of fracture surfaces. The fractographs illustrate the grain-boundary cavitation; slip lines; intergranular fracture; cleavage fracture; notch-impact fracture; oxide inclusions and blowholes; ductile rupture; impact fracture and tensile-test fracture surfaces; fatigue striations; and crack initiation and propagation of pure irons.
Book Chapter
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000607
EISBN: 978-1-62708-181-8
Abstract
This article is an atlas of fractographs that helps in understanding the causes and mechanisms of fracture of high-carbon steels and in identifying and interpreting the morphology of fracture surfaces. The fractographs illustrate the following: torsional fatigue fracture, hydrogen-embrittlement fracture, fatigue crack propagation, and corrosion fatigue of components made from high-carbon steels. The high-carbon steel components include bull gear, drive shaft, power boiler stoker grate, steel wheel, spring wire, suspension spring, automotive engine valve spring, power spring, cantilever-type spring, railroad rail, and seamless drill pipe.
1