Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-2 of 2
T.A. Palmer
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006557
EISBN: 978-1-62708-290-7
Abstract
The formation of defects within additive-manufactured (AM) components is a major concern for critical structural and cyclic load applications. Thus, understanding the mechanisms of defect formation in fusion-based processes is important for prescribing the appropriate process parameters specific to the alloy system and selected processing technique. This article discusses the formation of defects within metal additive manufacturing, namely fusion-based processes and solid-state/sintering processes. Defects observed in fusion-based processes include lack of fusion, keyhole collapse, gas porosity, solidification cracking, solid-state cracking, and surface-connected porosity. The types of defects in solid-state/sintering processes are sintering porosity and improper binder burnout. The article also discusses defect-mitigation strategies, such as postprocess machining, surface treatment, and postprocessing HIP to eliminate defects detrimental to properties from the as-built condition. The use of noncontact thermal, optical, and ultrasound techniques for inspecting AM components are also considered. The final section summarizes the knowledge gap in our understanding of the defects observed within AM components.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005610
EISBN: 978-1-62708-174-0
Abstract
The primary goal of quality control in electron beam (EB) welding is to consistently produce defect-free and structurally sound welds. This article discusses the common procedures for controlling the EB welding process, the control of the essential machine parameters, and the introduction of closed-loop controls and diagnostic feedback systems in the EB welding systems. It reviews the beam diagnostic tools that interrogate the beam to produce a reconstruction of the power density distribution and provide additional information on the size and shape of the EB. Knowledge of these beam parameters can be used to improve process understanding and control. The article also describes the application areas of beam diagnostics: machine characterization, weld parameter transfer, and weld quality control.