Update search
Filter
- Title
- Authors
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- References
Filter
- Title
- Authors
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- References
Filter
- Title
- Authors
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- References
Filter
- Title
- Authors
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- References
Filter
- Title
- Authors
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- References
Filter
- Title
- Authors
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-4 of 4
Sia Nemat-Nasser
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003297
EISBN: 978-1-62708-176-4
Abstract
This article illustrates the momentum-trapping scheme in the incident bar and stress-reversal technique which is used to change the strain rate during the course of Hopkinson bar compression or tension experiments. It describes techniques to recover the sample after it has been subjected to a cycle of compression followed by tension or tension followed by compression with illustrations. The article provides information on the recovery dynamic testing of hard materials such as ceramics and ceramic composites and explains high-temperature dynamic recovery tests. The recovery of the sample that has been subjected to a single stress pulse allows a number of interesting applications, a few of which are reviewed.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003293
EISBN: 978-1-62708-176-4
Abstract
High strain rate testing is important for many engineering structural applications and metalworking operations. This article describes various methods for high strain rate testing. Several methods have been developed, starting with the pioneering work of John Hopkinson and his son, Bertram Hopkinson. Based on these contributions and also on an important paper by R.M. Davies, H. Kolsky invented the split-Hopkinson pressure bar, which allows the deformation of a sample of a ductile material at a high strain rate, while maintaining a uniform uniaxial state of stress within the sample.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003301
EISBN: 978-1-62708-176-4
Abstract
Triaxial Hopkinson techniques can be used to simultaneously subject a sample to axial and lateral compressions. The lateral compression may be applied through a pneumatic pressure vessel or dynamically using a special Hopkinson technique. This article reviews these two techniques in detail. It illustrates a 75-mm Hopkinson system, particularly designed to test large samples of concrete, rock, polymeric composites, and other materials with relatively coarse microstructures. The article also provides information on the pneumatic pressure vessel for a 75-mm Hopkinson bar test system and the dynamic triaxial load cell on a 19-mm Hopkinson bar.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003304
EISBN: 978-1-62708-176-4
Abstract
Impact tests are used to study dynamic deformation and failure modes of materials. This article discusses low-velocity impact experiments in single-stage gas guns. It describes surface velocity measurements with laser interferometric techniques. The article details plate impact soft-recovery experiments, pressure-shear friction experiments, and low-velocity penetration experiments. It reviews two types of plate impact soft-recovery experiments: normal plate impact and pressure-shear plate impact experiments. The article provides information on low-velocity penetration experiments, which include the setup for direct penetration experiment (rod-on-plate) and the reverse penetration experiment (plate-on-rod). It also considers high-temperature plate impact testing and impact techniques with in-material stress and velocity measurements.