Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-1 of 1
Jim Oakes
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005928
EISBN: 978-1-62708-166-5
Abstract
The atmosphere within a furnace chamber is a basic factor in achieving the desired chemical reactions with metals during heat treating. This article presents the fundamentals of heat treating atmospheres, and describes two groups of atmosphere control, namely, furnace atmosphere control and supply atmosphere control. The two basic types of atmospheric supply systems are generated atmospheres and nitrogen-base atmospheres. The article provides a brief overview of the gas reactions associated with oxidation and carbon control to ensure either carburization, or to prevent decarburization. It demonstrates how the carbon potential control is achieved by controlling water vapor concentration, carbon dioxide concentration, or oxygen partial pressure. The article also describes the various devices and analyzers used to monitor sampled gas from furnace atmospheres, namely, chromatographs, oxygen probes, Orsat analyzers, infrared analyzers, dewpoint analyzers, and hot-wire analyzers. Finally, it discusses the advantages, disadvantages, and limitations of these analyzers.