Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-2 of 2
Anthony D. Rollett
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006568
EISBN: 978-1-62708-290-7
Abstract
Powder-bed additive manufacturing (AM) processes are some of the most commonly used techniques, necessitating the accurate measurement of powder flowability properties. This article discusses some powder flow tests that occur in powder-bed AM machines. These include the Hall/Carney flow test, bulk/tap density, rheometer, and the revolving or rotating drum technique. The three categories of powder properties that are available from rheometer experiments are discussed: bulk, dynamic flow, and shear properties. The article also describes the basic principles and applications of micro-X-ray computed tomography in studying powder porosity characteristics nondestructively.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006573
EISBN: 978-1-62708-290-7
Abstract
Traditional processing methods for the part production of Co-Cr alloys include casting, powder metallurgy, and metal forming. However, the steps involved during materials processing followed by metal forming and machining are time consuming and fraught with processing variables. Three-dimensional (3D) printing enables rapid evolution in design, personalization, and so on. This article presents a brief description of some common additive manufacturing (AM) processes for the production of cobalt alloy parts, and provides a comparison between AM and conventional processing methods. The discussion is centered on process-microstructure-properties correlation in additively manufactured cobalt alloys and applications of these alloys.