Skip to Main Content
Skip Nav Destination

A brittle-like crack propagation caused failure in a rubber office-chair roller. A crack initiated from the inside of the roller and propagated in a discontinuous brittle-like fashion, as indicated from the evolution of concentric fracture striations. Compressive fatigue was a dominant mode of loading. Nevertheless, the fracture surface of the failure-causing crack suggested a tensile-stress component was involved in driving failure.

Fasteners, made in high-production progressive dies from 0.7 mm thick cold-rolled 1060 steel, were used to secure plastic fabric or webbing to the aluminum framework of outdoor furniture. It was found that approximately 30% of the fasteners cracked and fractured as they were compressed to clamp onto the framework prior to springback. The heat treatment cycle of the fasteners consisted of austenitizing, quenching, tempering to obtain a tempered martensite microstructure, acid cleaning, zinc electroplating, coating with a clear dichromate and thereafter baking to remove the nascent hydrogen. It was revealed that fasteners treated in this manner were brittle due to hydrogen embrittlement as the baking process was found to not be able to remove all the nascent hydrogen which had induced during acid cleaning and electroplating. The heat treatment cycle was modified to produce a bainitic structure and the method of plating the fastener with zinc was changed from electroplating to a mechanical deposition process to thus avoid hydrogen embrittlement.

You do not currently have access to this chapter.
Don't already have an account? Register
Close Modal

or Create an Account

Close Modal
Close Modal