Welding, Brazing, and Soldering
Procedure Development and Practice Considerations for Solid-State Welding
-
Published:1993
Abstract
Diffusion welding involves minimal pressurization, but relatively high temperatures and long periods of time. This article discusses the process variants of diffusion welding: solid-phase and liquid-phase processes. It describes the diffusion welding of carbon and low-alloy steels, high-strength steels, stainless steels, and aluminum-base alloys. The article provides a discussion on dissimilar metal combinations, such as ferrous-to-ferrous combinations, nonferrous-to-nonferrous combinations, ferrous-to-nonferrous combinations, and metal-ceramic joining.
Abstract
Friction welding (FRW) is a solid-state welding process that uses the compressive force of the workpieces that are rotating or moving relative to one another, producing heat and plastically displacing material from the faying surfaces to create a weld. This article reviews practice considerations for the two most common variations: inertia welding and direct-drive friction welding. Direct-drive friction welding differs from inertia welding, primarily in how the energy is delivered to the joint. The article discusses the parameter calculations for inertia welding and direct-drive friction welding. It provides information on friction welding of carbon steels, stainless steels, aluminum-base alloys, and copper-, nickel-, and cobalt-base materials.
Dan Hauser, Procedure Development and Practice Considerations for Solid-State Welding, Welding, Brazing, and Soldering, Vol 6, ASM Handbook, Edited By David LeRoy Olson, Thomas A. Siewert, Stephen Liu, Glen R. Edwards, ASM International, 1993
Download citation file: