Skip to Main Content
Skip Nav Destination

It should be apparent with just a quick glance through this Volume that a great deal of technical progress has been made since the first edition was published in 1987 (as Engineered Materials Handbook, Volume 1). Much of the earlier promise of high performance organic-matrix composites (OMCs) has been fulfilled. These materials are now the preferred design solution for an expansive scope of applications. Earlier concerns related to high cost and marginal manufacturability have been satisfactorily addressed through high volume and innovative design and manufacturing, including extensive use of unitized design and construction. A clear example of the success in these areas is illustrated by the growing use of high-performance composites in the commodity applications of civil infrastructure. Nonetheless, cost and manufacturability continue to be areas of vigorous development and hold hope for significant future advancements, along with the development of composite materials with higher specific properties, higher operating temperatures, and improved supportability. One can expect to see broad advances in innovative structural concepts and certification methods in the future.

The progress in metal-matrix composites (MMCs) has been equally remarkable. Although only marginal coverage was warranted in the first edition, MMCs now represent a significant material option in the international marketplace. The world market for MMCs was over 2.5 million kg (5.5 million pounds) in 1999, and an annual growth rate of over 17% has been projected for the next several years. Significant applications are in service in the aeronautical, aerospace, ground transportation, thermal management/electronic packaging, and recreation industries. The ability to offer significant improvements in structural efficiency and to excel in several other functional areas, including thermal management and wear, and to utilize existing metalworking infrastructure have aided this progress. Continued future extension into both new and existing markets is expected.

While ceramic-matrix composite (CMC) technology is still largely centered in the research and development phase, significant advancements have been made. Some commercial applications now exist, and strategies for growing market insertion are being pursued. The traditional motivation of structural performance and environmental resistance at the highest application temperatures continue to provide incentive for development. Recent important research accomplishments provide growing optimism that significant aeropropulsion structural applications will be fielded in the coming decade.

The primary objective of ASM Handbook, Volume 21, Composites is to provide a comprehensive, practical, and reliable source of technical knowledge, engineering data, and supporting information for composite materials. Coverage of OMCs and MMCs is provided in a balanced fashion that reflects the maturity of each material class. Given the current status of CMC materials, less coverage is provided, but it, too, is focused in areas of current industrial importance. This Handbook is intended to be a resource volume for nonspecialists who are interested in gaining a practical working knowledge of the capabilities and applications of composite materials. Thus, coverage emphasizes well-qualified information for materials that can be produced in quantities and product forms of engineering significance. This Volume is not intended to be a presentation of fundamental research activities, although it certainly provides an important reference for scientists engaged in the development of new composite materials. The full range of information of importance to the practical technologist is provided in this Volume, including topics of constituent materials; engineering mechanics, design, and analysis; manufacturing processes; post-processing and assembly; quality control; testing and certification; properties and performance; product reliability, maintainability, and repair; failure analysis; recycling and disposal; and applications.

This new edition builds on the success of the version published as Volume 1 of the Engineered Materials Handbook. Information on OMCs has been updated to reflect advancements in this technology field, including improvements in low cost manufacturing technologies and significantly expanded applications in areas such as infrastructure. Progress in MMCs has been particularly dramatic since the previous edition, and new information on these materials provides an up-to-date comprehensive guide to MMC processing, properties, applications, and technology. CMCs also have entered service in limited applications since the previous edition, and the coverage of these materials reflects this progress. These three classes of composites are covered in each Section of the Volume as appropriate to provide a unified view of these engineered materials and to reduce redundancies in the previous edition.

We would like to offer our personal, heartfelt appreciation to the Section Chairpersons, article authors, reviewers, and ASM staff for sharing both their expertise and extensive efforts for this project.

Daniel B. Miracle
Steven L. Donaldson
Air Force Research Laboratory

Send Email

Recipient(s) will receive an email with a link to 'Composites > Preface' and will not need an account to access the content.

Subject: Composites > Preface

(Optional message may have a maximum of 1000 characters.)

×
Close Modal

or Create an Account

Close Modal
Close Modal