Corrosion Resistance of Titanium Alloys
-
Published:2003
Abstract
This article provides a background of the complex relationship between titanium and its alloys with aqueous environments, which is dictated by the presence of a passivating oxide film. It describes the corrosion vulnerability of titanium and titanium oxides by the classification of oxide failure mechanisms. The mechanisms are spatially localized oxide film breakdown by the ingress of aggressive anions; spatially local or homogenous chemical dissolution of the oxide in a strong reducing-acid environment; and mechanical disruptions or depassivation such as scratching, abrading, or fretting. Titanium alloys can be classified into three primary groups such as titanium alloys with hexagonal close-packed crystallographic structure; beta titanium alloys with body-centered cubic crystallographic structures; and alpha + beta titanium alloys including near-alpha and near-beta titanium alloys. The article also illustrates the effects of alloying on active anodic corrosion of titanium and repassivation behavior of titanium and titanium-base alloys.
Steven Yu, Corrosion Resistance of Titanium Alloys, Corrosion: Fundamentals, Testing, and Protection, Vol 13A, ASM Handbook, Edited By Stephen D. Cramer, Bernard S. Covino, Jr., ASM International, 2003, p 703–711, https://doi.org/10.31399/asm.hb.v13a.a0003677
Download citation file: