Service Characteristics of Carbon and Low-Alloy Steels
-
Published:1990
Abstract
This article discusses some elevated-temperature properties of carbon steels and low-alloy steels with ferrite-pearlite and ferrite-bainite microstructures for use in boiler tubes, pressure vessels, and steam turbines. The selection of steels to be used at elevated temperatures generally involves compromise between the higher efficiencies obtained at higher operating temperatures and the cost of equipment, including materials, fabrication, replacement, and downtime costs. The article considers the low-alloy steels which are the creep-resistant steels with 0.5 to 1.0% Mo combined with 0.5 to 9.0% Cr and perhaps other carbide formers. The factors affecting mechanical properties of steels include the nature of strengthening mechanisms, the microstructure, the heat treatment, and the alloy composition. The article describes these factors, with particular emphasis on chromium-molybdenum steels used for elevated-temperature service. Although the mechanical properties establish the allowable design-stress levels, corrosion effects at elevated temperatures often set the maximum allowable service temperature of an alloy. The article also discusses the effects of alloying elements in annealed, normalized and tempered, and quenched and tempered steels.
Service Characteristics of Carbon and Low-Alloy Steels, Properties and Selection: Irons, Steels, and High-Performance Alloys, Vol 1, ASM Handbook, By ASM Handbook Committee, ASM International, 1990
Download citation file:
Data Ecosystem
The ASM Data Ecosystem arms ASM Members and the scientific community with the tools and data required to exponentially expand the boundaries of materials science to meet the needs of Industry 4.0.