Creep and Stress-Rupture Failures
-
Published:2021
Abstract
The principal types of elevated-temperature mechanical failure are creep and stress rupture, stress relaxation, low- and high-cycle fatigue, thermal fatigue, tension overload, and combinations of these, as modified by environment. This article briefly reviews the applied aspects of creep-related failures, where the mechanical strength of a material becomes limited by creep rather than by its elastic limit. The majority of information provided is applicable to metallic materials, and only general information regarding creep-related failures of polymeric materials is given. The article also reviews various factors related to creep behavior and associated failures of materials used in high-temperature applications. The complex effects of creep-fatigue interaction, microstructural changes during classical creep, and nondestructive creep damage assessment of metallic materials are also discussed. The article describes the fracture characteristics of stress rupture. Information on various metallurgical instabilities is also provided. The article presents a description of thermal-fatigue cracks, as distinguished from creep-rupture cracks.
Richard P. Baron, Creep and Stress-Rupture Failures, Failure Analysis and Prevention, Vol 11, 2021 ed., ASM Handbook, Edited By Brett A. Miller, Roch J. Shipley, Ronald J. Parrington, Daniel P. Dennies, ASM International, 2021, p 432–443, https://doi.org/10.31399/asm.hb.v11.a0006780
Download citation file:
Sept. 30 – Oct. 4 | Cleveland, Ohio
Keep up to date with the latest materials and processing technologies. Register today for IMAT 2024 & IFHTSE World Congress!