Skip to Main Content
Skip Nav Destination

With the downturn in beryllium production due to changes in the international political, environmental, health and safety issues, there has been a curtailment in beryllium research and development and a significant loss in beryllium intellectual capacity. Dr. Walsh, knowing that beryllium exhibits unique and advantageous properties as a primary material and as an alloying addition, foresaw that beryllium offers significant advantages that can not be ignored if technology is to advance. Dr. Walsh envisioned a book, which would serve the function as an instructional tool to educate a scientist and engineer as to the chemistry and chemical and metallurgical processing of beryllium. This book should serve as a textbook for a short course or be complete enough to be used by an individual in self-education. This book is, also, to serve as an archive of the tremendous amount of generated knowledge, which does not need to be rediscovered. And finally, this book should offer the user a one stop resource for the necessary chemical and physical data that is often required by practitioners of the chemistry and/or chemical processing of beryllium. Dr. Walsh was concerned about the education of young engineers and wanted them to be fully prepared with both beryllium science and technology, but, also, to have cognizance about the health issues and the proper practices to handle and process beryllium ore, metals, chemicals and waste.

The book is presented in the manner of an introduction of what beryllium is, its history, and its chemical and physical properties. The mineralogy of beryllium, the preferred sources, and the global source of ore bodies are presented. The identification and specifics of the industrial metallurgical processes used to form oxide from the ore and then metal from the oxide are thoroughly described. The special features of beryllium chemistry are introduced, including analytical chemical practices. Beryllium compounds of industrial interest are identified and discussed. Manufacturing processes of alloying, casting, powder metallurgy processing, forming, metal removal, joining, and others are introduced. The industrially interesting alloys are also identified and specified for their content and applications. The physical metallurgy chapter is offered to bring some conformity between chemical and physical metallurgical processing of beryllium, metal, alloys, and compounds. The environmental degradation of beryllium and its alloys both in aqueous and high temperature condition are presented. The health issues are thoroughly presented in one chapter written by experienced professionals. Another chapter is offered to describe the various requirements to handle beryllium in the workplace and the established practices that are available to meet these continuing requirements. A thorough list of references will assist the user of this book in further investigation.

Contributors to this book come from industry, the academic world, and national laboratories. Each group provides their insight on beryllium technology. We would like to extend a special note of appreciation for the support of Lawrence Livermore National Laboratories in this project.

David L. Olson
Colorado School of Mines
Edgar E. Vidal
Brush Wellman, Inc.
January 2009

Send Email

Recipient(s) will receive an email with a link to 'Beryllium Chemistry and Processing > Preface' and will not need an account to access the content.

Subject: Beryllium Chemistry and Processing > Preface

(Optional message may have a maximum of 1000 characters.)

Close Modal

or Create an Account

Close Modal
Close Modal