Defects in Metal Additive Manufacturing Processes
-
Published:2020
Abstract
The formation of defects within additive-manufactured (AM) components is a major concern for critical structural and cyclic load applications. Thus, understanding the mechanisms of defect formation in fusion-based processes is important for prescribing the appropriate process parameters specific to the alloy system and selected processing technique. This article discusses the formation of defects within metal additive manufacturing, namely fusion-based processes and solid-state/sintering processes. Defects observed in fusion-based processes include lack of fusion, keyhole collapse, gas porosity, solidification cracking, solid-state cracking, and surface-connected porosity. The types of defects in solid-state/sintering processes are sintering porosity and improper binder burnout. The article also discusses defect-mitigation strategies, such as postprocess machining, surface treatment, and postprocessing HIP to eliminate defects detrimental to properties from the as-built condition. The use of noncontact thermal, optical, and ultrasound techniques for inspecting AM components are also considered. The final section summarizes the knowledge gap in our understanding of the defects observed within AM components.
M. Brennan, J.S. Keist, T.A. Palmer, Defects in Metal Additive Manufacturing Processes, Additive Manufacturing Processes, Vol 24, ASM Handbook, Edited By David L. Bourell, William Frazier, Howard Kuhn, Mohsen Seifi, ASM International, 2020, p 277–286, https://doi.org/10.31399/asm.hb.v24.a0006557
Download citation file: