Skip to Main Content

Abstract

This article reviews the tensile properties and toughness characteristics of discontinuously reinforced aluminum (DRA) composites in terms of particle spacing, particle size, volume fraction, matrix alloy, and matrix microstructure. Both fracture toughness data and impact toughness data of the DRA composites are summarized. The article discusses the effects of confining pressure on the ductility of the DRA materials. It describes the fatigue behavior, such as stress-life behavior, strain-life behavior, and fatigue crack propagation, of the DRA.

Abstract

Knowledge of fatigue behavior at the laminate level is essential for understanding the fatigue life of a laminated composite structure. This article describes fatigue failure of composite laminates in terms of layer cracking, delamination, and fiber break and interface debonding. It discusses the fatigue behavior of composite laminates in the form of a relation between applied maximum fatigue stress and fatigue life. The article explains Weibull distribution and parameters estimation for fatigue data analysis and life prediction of composite laminates. It analyzes the fatigue properties and damage tolerance of fiber-metal laminates such as ARALL and GLARE laminates. The article concludes with a discussion on the effects of fatigue on notched and unnotched specimens.

You do not currently have access to this chapter.
Don't already have an account? Register

1996. "Fatigue and Fracture of Composites, Ceramics, and Glasses", Fatigue and Fracture

Download citation file:


Close
Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal