Skip to Main Content
Skip Nav Destination

A type 304 stainless steel tube that failed in a boiler stack economizer was analyzed to determine the cause. The investigation consisted of visual, SEM/EDS, and metallographic analysis. Several degradation mechanisms appeared to be at work, including pitting corrosion, chloride stress corrosion cracking, and fatigue fracture. Investigators concluded that the primary failure mechanism was fatigue fracture, although either of the other mechanisms may have eventually caused the tube to fail in the absence of fatigue.

A back wall riser tube in a high pressure boiler failed, interrupting operations in a cogeneration plant. The failure occurred in a tube facing the furnace, causing eight ruptured openings over a 1.8 m section. The investigation consisted of an on-site visual inspection, nondestructive testing, energy dispersive x-ray analysis, and inductively coupled plasma mass spectrometry. The tube was made from SA 210A1 carbon steel that had been compromised by wall thinning and the accumulation of fire and water-side scale deposits. Investigators determined that the tube failed due to prolonged caustic attack that led to ruptures in areas of high stress. The escaping steam eroded the outer surface of the tube causing heavy loss of metal around the rupture points.

You do not currently have access to this chapter.
Don't already have an account? Register
Close Modal

or Create an Account

Close Modal
Close Modal