Skip to Main Content

Abstract

This article is a detailed account of additive manufacturing (AM) processes for copper and copper alloys such as copper-chromium alloys, GRCop, oxide-dispersion-strengthened copper, copper-nickel alloys, copper-tin alloys, copper-zinc alloys, and copper-base shape memory alloys. The AM processes include binder jetting, ultrasonic additive manufacturing, directed-energy deposition, laser powder-bed fusion, and electron beam powder-bed fusion. The article presents a review of the literature and state of the art for copper alloy AM and features data on AM processes and industrial practices, copper alloys used, selected applications, material properties, and where applicable, compares these data and properties to traditionally processed materials. The data presented and the surrounding discussion focus on bulk metallurgical processing of copper components. The discussion covers the composition and performance criteria for copper alloys that have been reported for AM and discusses key differences in process-structure-property relationships compared to conventionally processed material. The article also provides information on feedstock considerations for copper powder handling.

You do not currently have access to this chapter.
Don't already have an account? Register

Timothy J. Horn, Diana Gamzina, Additive Manufacturing of Copper and Copper Alloys, Additive Manufacturing Processes, Vol 24, ASM Handbook, Edited By David L. Bourell, William Frazier, Howard Kuhn, Mohsen Seifi, ASM International, 2020, p 388–418, https://doi.org/10.31399/asm.hb.v24.a0006579

Download citation file:


Close
Close Modal

or Create an Account

Close Modal
Close Modal