1-20 of 44 Search Results for

zirconium

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001718
EISBN: 978-1-62708-220-4
... Abstract Post-service destructive evaluation was performed on two commercially pure zirconium pump impellers. One impeller failed after short service in an aqueous hydrochloric acid environment. Its exposed surfaces are bright and shiny, covered with pockmarks, and peppered with pitting...
Image
Published: 01 June 2019
Fig. 1 View of the damaged zirconium impeller. Several sections have been removed for evaluation. Note the linear defects (arrows). (0.2×) More
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001031
EISBN: 978-1-62708-214-3
...,” Report No. IITRI-P06150-P495A, IITRI/MRF, NASA—Marshall Space Flight Center, 27 Dec 1991 . 2. Swisher J.H. and Fuchs E.O. , Dispersion-Strengthening of Copper by Internal Oxidation of Two-Phase Copper-Zirconium Alloys , Copper and Its Alloys , Monograph and Report Series No. 34...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c0047840
EISBN: 978-1-62708-223-5
... hardness AZ UNS T30102 Metalworking-related failures Fatigue fracture The mandrel shown in Fig. 1 was part of a rolling tool used for mechanically joining two tubes before they were installed in a nuclear reactor. The operation consisted of expanding the end of a zirconium tube into a stainless...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001662
EISBN: 978-1-62708-236-5
... involved the use of direct-fired iron pots or steam heated evaporators with silicon iron tubes. Other systems used vacuum evaporating units lined with lead and acid resistant brick. However, with the more recent development of materials such as tantalum, zirconium, and reliable glass-lined steel...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001391
EISBN: 978-1-62708-215-0
... of the group 2 sections (see Fig. 11 ) determined that the resistor substrate was high-purity alumina. The metal portion of the cermet metallization was silver rich; the ceramic portion was zirconium rich. Significant amounts of silicon were also detected, most likely present as an oxide or glass former...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001283
EISBN: 978-1-62708-215-0
...Results of chemical analysis Table 1 Results of chemical analysis Element Composition, % Bar stock L77 specification Copper 3.96–4.09 3.9–5.0 Magnesium 0.36–0.56 0.2–0.8 Silicon 0.62–0.76 0.5–0.9 Manganese 0.52–0.61 0.4–1.2 Titanium + Zirconium 0.017 0.2...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003552
EISBN: 978-1-62708-180-1
... formation Transition, rare earth, alkaline-earth metals, and their alloys (includes titanium, tantalum, zirconium, uranium, and thorium) Brittle hydrides often form preferentially where the stress is highest. The first three types are usually observed at ambient temperatures and are closely...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006784
EISBN: 978-1-62708-295-2
... reactions of hydrogen with matrix or alloy elements form high-pressure pockets of gases other than molecular hydrogen. Cracking from hydride formation Transition, rare earth, alkaline-earth metals, and their alloys (includes titanium, tantalum, zirconium, uranium, and thorium) Brittle hydrides often...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003529
EISBN: 978-1-62708-180-1
.... For example, a zirconium oxide abrasive is often used to prepare steels for this type of analysis, because zirconium is rarely specified in steels. Thus, if a small piece of zirconium oxide does get embedded in the metal, it will not affect the analysis. The actual size of the “small chunk” required...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001122
EISBN: 978-1-62708-214-3
... Sulfur 0.035 0.00–0.05 0.00–0.05 Silicon 0.13 0.10–0.30 … Copper 0.020 … … Tin 0.002 … … Nickel 0.007 … … Chromium 0.036 … … Molybdenum 0.001 … … Aluminum 0.014 … … Vanadium <0.001 … … Niobium <0.001 … … Zirconium <0.001...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001111
EISBN: 978-1-62708-214-3
... and Zirconium on the Boron Hardenability Effect in Constructional Alloy Steels , Trans. Met. Soc. AIME , Vol 242 , Aug 1968 , p 1689 . Selected References Selected References • Fisher J.W. , Failures of Bridge Components , Failure Analysis and Prevention , Vol 11 , ASM Handbook , ASM...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006787
EISBN: 978-1-62708-295-2
... the transport of electrons or ions. In certain situations, scales form on some metals according to a cubic-rate law. Cubic kinetics reported for the oxidation of zirconium and hafnium are explained as a combination of diffusion-limited scale formation and oxygen dissolution into the metal ( Ref 3 ). In other...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001753
EISBN: 978-1-62708-241-9
... Titanium 0.27 Nickel &lt;0.01 Lead &lt;0.01 Tin &lt;0.01 Beryllium &lt;0.01 Vanadium 0.01 Zirconium &lt;0.01 Chemical composition of AA 712.0 [<xref rid="c9001753-ref1" ref-type="bibr">1</xref>] Table 2 Chemical composition of AA 712.0 [ 1 ] Element Wt...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001754
EISBN: 978-1-62708-241-9
... was found to be Titanium based, the spectral results being most similar to a Ti–6Al–2Sn–4Zr–2Mo as evidenced by the presence of aluminum and zirconium ( Fig. 12 ). This material was similar to the traces of smeared material found on the bearing ball adjacent to a spalled region. Follow-up questions led...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001721
EISBN: 978-1-62708-225-9
... to describe what we now refer to as SCC due to the resemblance between stress corrosion cracks and cracks in seasoned wood. 1 Today, SCC has been identified in many alloy systems ranging from the simple brass alloys of the late 19 th century to complicated titanium and zirconium alloys used in some...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001020
EISBN: 978-1-62708-214-3
... Chromium 0.005 … Nickel 0.03 0.10 (max) Zinc 5.31 5.2–6.2 Titanium 0.04 0.20 (max) (b) Vanadium 0.01 … Zirconium &lt;0.005 … Total impurities … 0.05 (max) (a) From Key To Aluminum Alloys, Designations, Compositions, Trade Names of Aluminum Materials , 1st ed., W...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001717
EISBN: 978-1-62708-217-4
... 0.65 0.50 – 0.80 Aluminum 0.12 0.05 – 0.15 Copper 0.23 0.25 max. Tungsten 0.036 0.25 max. Chromium 0.22 0.25 max. Manganese 0.042 0.10 max. Silicon 0.081 0.10 max. Phosphorus 0.001 0.010 max. Sulfur 0.003 0.010 max. Zirconium 0.012 0.020 max. Boron...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003540
EISBN: 978-1-62708-180-1
..., and it has been demonstrated that cracking can be prevented by deoxidizing with titanium or zirconium or by combined titanium and aluminum ( Ref 18 ). Thermal Embrittlement of Maraging Steels Thermal embrittlement of maraging steels occurs when they have been heated above 1095 °C (2000 °F...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003533
EISBN: 978-1-62708-180-1
... in an SEM (e.g., an unetched silicon wafer), little or no contrast would be observed using either technique. Fig. 5 Example of a layered structure of copper, niobium, and zirconium. (a) Imaged using secondary electrons. (b) Imaged using backscattered electrons. Copper appears dark gray, zirconium...