Skip Nav Destination
Close Modal
Search Results for
zinc alloys
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 153 Search Results for
zinc alloys
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0046737
EISBN: 978-1-62708-229-7
... pictured in Fig. 1(a) broke apart in four places. In Fig. 1(b) , the separation second from the left and second from the right are complete breaks that occurred in service. The casting shown in Fig. 1(c) broke into three pieces in service. Fig. 1 Copper-zinc alloy cooling-tower hardware...
Abstract
After 14 months of service, cracks were discovered in castings and bolts used to fasten together braces, posts, and other structural members of a cooling tower, where they were subjected to externally applied stresses. The castings were made of copper alloys C86200 and C86300 (manganese bronze). The bolts and nuts were made of copper alloy C46400 (naval brass, uninhibited). The water that was circulated through the tower had high concentrations of oxygen, carbon dioxide, and chloramines. Analysis (visual inspection, bend tests, fractographs, 50x unetched micrographs, 100x micrographs etched with H4OH, and 500x micrographs) supported the conclusions that the castings and bolts failed by SCC caused by the combined effects of dezincification damage and applied stresses. Recommendations included replacing the castings with copper alloy C87200 (cast silicon bronze) castings. Replacement bolts and nuts should be made from copper alloy C65100 or C65500 (wrought silicon bronze).
Image
in Failure of Copper-Zinc Alloy Cooling-Tower Hardware
> ASM Failure Analysis Case Histories: Power Generating Equipment
Published: 01 June 2019
Fig. 1 Copper-zinc alloy cooling-tower hardware that failed by SCC and dezincification. (a), (b), and (c) Photographs showing some of the castings that broke into two or more parts in service. 1 3 ×. In (b), separations other than those second from left and second from right were
More
Image
in Stress-Corrosion Cracking of a Die-Cast Zinc Alloy Nut
> ASM Failure Analysis Case Histories: Mechanical and Machine Components
Published: 01 June 2019
Fig. 1 Die-cast zinc alloy nuts from a water tap. (a) Nut for the cold-water tap that failed by SCC. (b) Mating nut for the hot-water top that shows only isolated areas of corrosion. (c) Unetched section showing metal in the cold-water tap after corrosion testing. 600×
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0048620
EISBN: 978-1-62708-225-9
... impurities, such as lead, tin, or cadmium. This composition problem with zinc alloys was recognized many years ago, and particular attention has been directed toward ensuring that high-purity zinc is used. This corrective measure reportedly resulted in virtual elimination of this type of defect...
Abstract
Two nuts were used to secure the water-supply pipes to the threaded connections on hot-water and cold-water taps. The nut used on the cold-water tap fractured about one week after installation. Examination of the fracture surfaces of the coldwater nut did not reveal any obvious defects to account for the fracture, but there were indications of excessive porosity in the nut. The fracture had occurred through the root of the first thread that was adjacent to the flange of the tap. It was found that the nut from the cold-water tap failed by SCC. Apparently, sufficient stress was developed in the nut to promote this type of failure by normal installation because there was no evidence of excessive tightening of the nut. Corrosion testing of the nuts indicated that the fractured nut was highly susceptible to intergranular corrosion because of either a deficiency in magnesium content or excessive impurities, such as lead, tin, or cadmium. This composition problem with zinc alloys was recognized many years ago, and particular attention has been directed toward ensuring that high-purity zinc is used. This corrective measure reportedly resulted in virtual elimination of this type of defect.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c0090971
EISBN: 978-1-62708-222-8
... Abstract A die-cast zinc adapter used in a snowthrower failed catastrophically in a brittle overload manner. The component had a chemical composition similar to standard zinc alloy ZA-27 (UNS Z35840), although the iron content was much higher and the copper slightly lower. The mechanical...
Abstract
A die-cast zinc adapter used in a snowthrower failed catastrophically in a brittle overload manner. The component had a chemical composition similar to standard zinc alloy ZA-27 (UNS Z35840), although the iron content was much higher and the copper slightly lower. The mechanical properties and alloy designation were not specified. Investigation (visual inspection, 187x SEM images, unetched 30x images, hardness testing, and chemical analysis) of both the failed adapter and an exemplar casting from known-good lot supported the conclusion that the casting failed as a result of brittle overload fracture due to excessive iron-zinc phase and gross porosity. These conditions acted synergistically to reduce the strength of the material. The composition was nonstandard, and the inherent brittleness suggested that it was unlikely that this material was an intentional proprietary alloy. No recommendations were made.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001215
EISBN: 978-1-62708-235-8
... Abstract The surface of a hook did not possess the smooth and shiny zinc bloom surface normally observed on hot galvanized steel parts but was matte and rough. Large cracks were observed in the zinc layer. The hook was made of silicon-killed alloy steel 41Cr4. A silicon content of 0.27...
Abstract
The surface of a hook did not possess the smooth and shiny zinc bloom surface normally observed on hot galvanized steel parts but was matte and rough. Large cracks were observed in the zinc layer. The hook was made of silicon-killed alloy steel 41Cr4. A silicon content of 0.27% was established analytically. Silicon accelerates the reaction between iron and zinc, which should have been taken into account in the present case by reducing the dip time or a small addition of aluminum (0.1 to 0.2%) to the galvanizing bath to retard the extremely rapid growth of the zinc layer and the strong alloy formation. Even in the case of steel parts with lower silicon contents the reaction between iron and zinc can continue until the pure zinc layer has been consumed entirely if the work piece is not cooled sufficiently after withdrawal.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001409
EISBN: 978-1-62708-229-7
... oxygen, carbon dioxide, or chloride content, and is accelerated by elevated temperatures and low water velocities. It is believed that, in the initial stages, solution of the copper-zinc alloy takes place, this being followed by a secondary reaction resulting in the elector-chemical redeposition...
Abstract
Dezincification is a particular form of corrosive attack which may occur in a variety of environments and to which some brasses are susceptible. It is favored by waters having a high oxygen, carbon dioxide, or chloride content, and is accelerated by elevated temperatures and low water velocities. In the present study, steam turbine condenser tubes had to be renewed after 25 years of service. The tubes were nominally of 70:30 brass. The appearance of a typically corroded one showed uniform dezincification attack on the bore, extending from one-half to two-thirds through the tube wall thickness.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001410
EISBN: 978-1-62708-220-4
.... It is believed that, in the initial stages, solution of the copper-zinc alloy takes place, this being followed by a secondary reaction resulting in the elector-chemical redeposition of the copper. The net result of the process is that sound metal is gradually replaced by a brittle, porous deposit of copper...
Abstract
A brass elbow that formed one termination of a steam heating coil failed adjacent to the brazed connection after ten years of service. Chemical analysis showed that the elbow was made from a 60-40 CuZn brass containing 3% lead and 1% tin, a typical alloy used for the manufacture of components by the hot stamping process. Microscopic examination indicated failure from dezincification. The fact that the screwed end was not affected indicated that the trouble was not caused by the condensate, which flowed through the elbow, but originated from the water heated in the vessel. The helical mode of the cracking was probably due to the torsional stresses which would be imposed on the elbow by thermally induced movements of the coil in service.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0046469
EISBN: 978-1-62708-229-7
... was the result of the use of an uninhibited brass that has a high zinc content and therefore is readily susceptible to dezincification. Recommendations The material for the tubes should be replaced with copper alloy C68700 (arsenical aluminum brass), which contains 0.02 to 0.06% As and is highly resistant...
Abstract
After about 17 years in service, copper alloy C27000 (yellow brass, 65% Cu) innercooler tubes in an air compressor began leaking cooling water, causing failure and requiring replacement. The tubes were 19 mm in diam and had a wall thickness of 1.3 mm (0.050 in.). The cooling water that flowed through the tubes was generally sanitary (chlorinated) well water; however, treated recirculating water was sometimes used. Analysis (visual inspection, 9x and 75x unetched micrographs, and spectrochemical analysis) showed a thick uniform layer of porous, brittle copper on the inner surface of the tube, extending to a depth of about 0.25 mm (0.010 in.) into the metal, plug-type dezincification extending somewhat deeper into the metal. This supported the conclusion that failure of the tubes was the result of the use of an uninhibited brass that has a high zinc content and therefore is readily susceptible to dezincification. Recommendations included replacing the material with copper alloy C68700 (arsenical aluminum brass), which contains 0.02 to 0.06% As and is highly resistant to dezincification. Copper alloy C44300 (inhibited admiralty metal) could be an alternative selection for this application; however, this alloy is not as resistant to impingement attack as copper alloy C68700.
Image
in Intergranular Corrosion Failure in Zn-Al Alloy Solenoid Valve Seats
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1992
Fig. 2 As-polished specimen of zinc-aluminum alloy Eutectic and proeutectic areas are shown. Black β-zinc precipitates inside proeutectic areas are β-Zn.
More
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001411
EISBN: 978-1-62708-234-1
..., and is accelerated by elevated temperatures and low water velocities. It is believed that, in the initial stages, solution of the copper-zinc alloy takes place, this being followed by a secondary reaction resulting in the elector-chemical redeposition of the copper. The net result of the process is that sound...
Abstract
A welded joint between lengths of 4 in. OD x 13 SWG copper pipe which formed part of a cold-water main failed by cracking over one-third of the circumference. Microscopic examination of the filler metal showed that it had a structure corresponding to a brass of the 60:40 type commonly used for bronze welding. Failure resulted from dezincification of the joint material from the internal side of the tube. Also, a selective attack on the beta phase had occurred. It was evident that the loss in mechanical strength arising from the corrosion had resulted in the development of cracking in service. The filler metal used was not resistant to the conditions to which it was exposed. Copper welding rods as per BS 1077 or a Cu-Ag-P brazing alloy as recommended in BS 699, would have been preferable.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001123
EISBN: 978-1-62708-214-3
... (max) 0.0005 Tin 0.005(max) 0.005 Fig. 1 Solenoid valve seat assembly, showing extensive cracking. Fig. 2 As-polished specimen of zinc-aluminum alloy Eutectic and proeutectic areas are shown. Black β-zinc precipitates inside proeutectic areas are β-Zn. Fig. 3...
Abstract
Extensive cracking was found in a batch of die-cast ZAMAK 3 solenoid valve seats during commissioning of the system in which they were installed. Scanning electron microscopic and chemical analyses conducted on one of the failed valve seats showed that the composition of the alloy was different from that specified. The presence of excess aluminum and lead impurities that had segregated to the grain boundaries, coupled with an inadequate amount of magnesium, resulted in intergranular corrosion and subsequent intergranular failure. Corrosion was accelerated by storage in a humid environment in a coastal area. It was recommended that proper chemical analysis of the zinc-aluminum alloy be carried out as a quality control procedure.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003549
EISBN: 978-1-62708-180-1
.... When an alloy is corroded, its component metals go into solution as their respective ions. More importantly, more than one reduction reaction can occur during corrosion. Consider the corrosion of zinc in aerated hydrochloric acid. Two cathodic reactions are possible: the evolution of hydrogen...
Abstract
This article provides an overview of the electrochemical nature of corrosion and analyzes corrosion-related failures. It describes corrosion failure analysis and discusses corrective and preventive approaches to mitigate corrosion-related failures of metals. These include: change in the environment; change in the alloy or heat treatment; change in design; use of galvanic protection; use of inhibitors; use of nonmetallic coatings and liners; application of metallic coatings; use of surface treatments, thermal spray, or other surface modifications; corrosion monitoring; and preventive maintenance.
Image
in Brittle Zinc Layer on a Hot-Galvanised Hook
> ASM Failure Analysis Case Histories: Processing Errors and Defects
Published: 01 June 2019
Fig. 3 Comparative micrograph showing a zinc layer of the usual thickness with normal structure (controlled galvanisation). The alloy layers are covered by a pure zinc layer with only isolated embedded alloy grains. 200 ×
More
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001753
EISBN: 978-1-62708-241-9
... and hardness are usually inversely related, this data indicates that this material can naturally overage with time, at temperatures higher than room temperature. This observation is substantiated by Hatch [ 3 ], as he indicates that “the tensile properties of the aluminum–zinc–magnesium alloys in the as-cast...
Abstract
A failure analysis investigation was conducted on a fractured aluminum tailwheel fork which failed moments after the landing of a privately owned, 1955 twin-engine airplane. Nondestructive evaluation via dye-penetrant inspection revealed no discernible surface cracks. The chemical composition of the sand-cast component was identified via optical emission spectroscopy and is comparable to an aluminum sand-cast alloy, AA 712.0. Metallographic evaluation via optical microscopy and scanning electron microscopy revealed a high degree of porosity in the microstructure as well as the presence of deleterious intermetallic compounds within interdendritic regions. Macrohardness testing produced hardness values which are noticeably higher than standard hardness values for 712.0. The primary fracture surfaces indicate evidence of mixed-mode fracture, via intergranular cracking, cleaved intermetallic particles, and dimpled cellular regions in the matrix. The secondary fracture surface demonstrates similar features of intergranular fracture.
Image
in Brittle Zinc Layer on a Hot-Galvanised Hook
> ASM Failure Analysis Case Histories: Processing Errors and Defects
Published: 01 June 2019
Fig. 2 Microstructure of the zinc layer on a section taken perpendicular to the surface of the hook at a point at which the zinc layer was still adhering. The pure zinc layer has been consumed by excessive alloy formation. 200 ×
More
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001439
EISBN: 978-1-62708-235-8
... compound, nickel phosphide. The use of a brazing alloy containing phosphorus was unsuitable on two counts and a quaternary alloy containing silver, copper, cadmium and zinc, such as those in group AG1 or AG2 of BS 1845 would be more suitable. However, because corrosive problems experienced in these units...
Abstract
Persistent leakage was experienced from copper tube heaters which formed part of dairy equipment. Metallurgical examination of the brazed joints showed them to have suffered a preferential corrosion attack. This resulted in the phosphide phase of the brazing alloy being corroded away, leaving a weak, porous residual structure. The brazing alloy was of type CP 1 as covered by BS 1845. Header and tube materials were basically copper-nickel alloys for which the use of a phosphorus bearing brazing alloy is not recommended owing to the possibility of forming the brittle intermetallic compound, nickel phosphide. The use of a brazing alloy containing phosphorus was unsuitable on two counts and a quaternary alloy containing silver, copper, cadmium and zinc, such as those in group AG1 or AG2 of BS 1845 would be more suitable. However, because corrosive problems experienced in these units indicated severe service conditions, a proprietary alloy similar to AG1, but containing 3% nickel, was recommended.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006805
EISBN: 978-1-62708-329-4
...) Excellent (b) Excellent (b) (c) A-286 Passivated Good (b) Excellent (b) Excellent (b) (c) Blind bolts (d) A-286 Passivated Excellent (b) Excellent (b) Excellent (c) Alloy steel Cadmium Not recommended (b) Excellent (b) Excellent (c) Pull-type lockbolts...
Abstract
This article first provides an overview of the types of mechanical fasteners. This is followed by sections providing information on fastener quality and counterfeit fasteners, as well as fastener loads. Then, the article discusses common causes of fastener failures, namely environmental effects, manufacturing discrepancies, improper use, or incorrect installation. Next, it describes fastener failure origins and fretting. Types of corrosion in threaded fasteners and their preventive measures are then covered. The performance of fasteners at elevated temperatures is addressed. Further, the article discusses the types of rivet, blind fastener, and pin fastener failures. Finally, it provides information on the mechanism of fastener failures in composites.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001812
EISBN: 978-1-62708-180-1
...-corrosion cracking, hydrogen embrittlement, and liquid-metal embrittlement of bolts and nuts. The article explains the most commonly used protective metal coatings for ferrous metal fasteners. Zinc, cadmium, and aluminum are commonly used for such coatings. The article also illustrates the performance...
Abstract
This article discusses different types of mechanical fasteners, including threaded fasteners, rivets, blind fasteners, pin fasteners, special-purpose fasteners, and fasteners used with composite materials. It describes the origins and causes of fastener failures and with illustrative examples. Fatigue fracture in threaded fasteners and fretting in bolted machine parts are also discussed. The article provides a description of the different types of corrosion, such as atmospheric corrosion and liquid-immersion corrosion, in threaded fasteners. It also provides information on stress-corrosion cracking, hydrogen embrittlement, and liquid-metal embrittlement of bolts and nuts. The article explains the most commonly used protective metal coatings for ferrous metal fasteners. Zinc, cadmium, and aluminum are commonly used for such coatings. The article also illustrates the performance of the fasteners at elevated temperatures and concludes with a discussion on fastener failures in composites.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0046079
EISBN: 978-1-62708-233-4
... that prolonged heating of the galvanized steel heater shells caused the zinc-rich surface to become alloyed with iron and reduce the number of layers. Also, heating caused zinc to diffuse along grain boundaries toward the center of the sheet. Zinc in the grain boundaries reacted with iron to form the brittle...
Abstract
After only a short time in service, oil-fired orchard heaters made of galvanized low-carbon steel pipe, 0.5 mm (0.020 in.) in thickness, became sensitive to impact, particularly during handling and storage. Most failures occurred in an area of the heater shell that normally reached the highest temperature in service. A 400x etched micrograph showed a brittle and somewhat porous metallic layer about 0.025 mm (0.001 in.) thick on both surfaces of the sheet. Next to this was an apparently single-phase region nearly 0.05 mm (0.002 in.) in thickness. The examination supported the conclusion that prolonged heating of the galvanized steel heater shells caused the zinc-rich surface to become alloyed with iron and reduce the number of layers. Also, heating caused zinc to diffuse along grain boundaries toward the center of the sheet. Zinc in the grain boundaries reacted with iron to form the brittle intergranular phase, resulting in failure by brittle fracture at low impact loads during handling and storage. Recommendation included manufacture of the pipe with aluminized instead of galvanized steel sheet for the combustion chamber.
1