Skip Nav Destination
Close Modal
By
Sara Fernandez, María José Quintana, José Ovidio García, Luis Felipe Verdeja, Roberto González ...
Search Results for
yield stress
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 406 Search Results for
yield stress
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Failure Analysis of a Radio-Activated Accelerator Component
> ASM Failure Analysis Case Histories: Failure Modes and Mechanisms
Published: 01 June 2019
Fig. 23 Yield stress as a function of dose for the current tests (♦), data from Ref 10 (▪), and neutron-irradiated alloy 718 from EBR II (X) 1
More
Image
in Superplastic HSLA Steels: Microstructure and Failure
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Fig. 5 Influence of strain rate on yield stress ( a ) and super-index m ( b ) in superplastic behavior at 800 °C
More
Image
in Superplastic HSLA Steels: Microstructure and Failure
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Fig. 15 Theoretic curves (Ashby–Verrall model) of logarithm of yield stress/shear modulus versus logarithm of strain rate considering different grain sizes as well as for the steel investigated ( dashed line )
More
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006934
EISBN: 978-1-62708-395-9
... 0.016 von Mises 0.12 0.068 0.010 σ y , uniaxial yield stress; G , shear modulus; μ, material parameter; P , pressure; τ y , shear yield stress. Source: Ref 62 Ratio of shear yield point to shear modulus at 0 K Table 1 Ratio of shear yield point to shear modulus at 0 K Polymer...
Abstract
This article describes the general aspects of creep, stress relaxation, and yielding for homogeneous polymers. It then presents creep failure mechanisms in polymers. The article discusses extrapolative methods for the prediction of long-term creep failure in polymer materials. Then, the widely used models to simulate the service life of polymers are highlighted. These include the Burgers power-law model, the Findley power-law model, the time-temperature superposition (or equivalence) principle (TTSP), and the time-stress superposition principle (TSSP). The Larson-Miller parametric method, one of the most common to describe the material deformation and rupture time, is also discussed.
Image
in Failures of Structures and Components by Metal-Induced Embrittlement
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Fig. 1 Delayed-failure curve (time-to-failure versus applied stress as a percentage of the yield stress) for aluminium-alloy weld (5083) specimens exposed to liquid mercury at 20 °C. Note that failure can be almost immediate (see arrows) or ~100 h for the same stress level [ 11 ]
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001221
EISBN: 978-1-62708-219-8
... treated prestressed concrete steel St 145/160 with a minimum yield stress of 145 kgf/mm 2 and tensile strength of 160 kgf/mm 2 . While the wire bundles, each containing over 100 wires, were being drawn into the channels they were repeatedly pulled over the sharp edges of square section guide blocks...
Abstract
During the construction of a prestressed concrete viaduct, several 12.2 mm diam wires ruptured after tensioning but before the channels were grouted. They were made of heat treated prestressed concrete steel St 145/160. While the wire bundles, each containing over 100 wires, were being drawn into the channels they were repeatedly pulled over the sharp edges of square section guide blocks. The fractures were initiated at these chafe zones. It was concluded that the chafing of the wires on the edges of the guide blocks, particularly the resulting martensite formation, caused the wires to rupture.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006944
EISBN: 978-1-62708-395-9
... with test temperature. Adapted from Ref 8 Fig. 6 Variation of stress-strain curves for cellulose acetate polymer with temperature. Adapted from Ref 10 Fig. 7 Variation of ultimate strength, yield stress, and elongation with temperature for cellulose acetate. Adapted from Ref 10...
Abstract
The discussion on the fracture of solid materials, both metals and polymers, customarily begins with a presentation of the stress-strain behavior and of how various conditions such as temperature and strain-rate affect the mechanisms of deformation and fracture. This article describes crazing and fracture in polymeric materials, with a review of the behavior of the elastic modulus as a function of temperature or time parameters, emphasizing the importance of the viscoelastic nature of their deformation and fracture. The discussion covers the behavior of polymers under stress, provides information on ductile and brittle behaviors, and describes craze initiation in polymers and crack formation and fracture by crazing. Macroscopic permanent deformation of polymeric materials caused by shear-yielding and crazing, which eventually can result in fracture and failure, is also covered.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006919
EISBN: 978-1-62708-395-9
... , is approximately equal to engineering strain, ε.) Fig. 4 Strain-rate and temperature dependence of yield strength for polyether-imide Fig. 5 Stress-strain behavior of polybutylene terephthalate as a function of strain rate, ε ̇ , at 22.2 °C (72 °F). (Note: For small strains...
Abstract
This article reviews the impact response of plastic components and the various methods used to evaluate it.. It describes the effects of loading rate on polymer deformation and the influence of temperature and strain rate on failure mode. It discusses the advantages and limitations of standard impact tests, the use of puncture tests for assessing material behavior under extreme strain, and the application of fracture mechanics for analyzing impact failures. It also develops and demonstrates the theory involved in the design and analysis of thin-walled, injection-molded plastic components.
Book Chapter
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001816
EISBN: 978-1-62708-241-9
... 27.4 137.5 2.78E−05 −4.56 1.438 Fig. 4 Engineering stress–strain curves at 800 °C and different crosshead speeds Fig. 3 True stress–strain curves at different temperatures and 5 mm/ min crosshead speed ( L 0 = 57 mm) Fig. 5 Influence of strain rate on yield stress...
Abstract
This paper describes the superplastic characteristics of shipbuilding steel deformed at 800 °C and a strain rate less than 0.001/s. After the superplastic deformation, the steel presents mixed fractures: by decohesion of the hard (pearlite and carbides) and ductile (ferrite) phases and by intergranular sliding of ferrite/ferrite and ferrite/pearlite, just as it occurs in stage III creep behavior. The behavior is confirmed through the Ashby-Verrall model, according to which the dislocation creep (power-law creep) and diffusion creep (linear-viscous creep) occur simultaneously.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003513
EISBN: 978-1-62708-180-1
... Generating Board. SF, safety factor; σ, applied stress; σ y , yield strength; a, crack length; W, panel width If a point describing the state of a component or structure (e.g., point W ) falls below the R6 curve ( Fig. 1 ), the structure is considered to be safe. A point falling on or above the R6...
Abstract
Optimized modeling of fracture-critical structural components and connections requires the application of elastic-plastic fracture mechanics. Such applications, however, can require sophisticated analytical techniques such as crack tip opening displacement (CTOD), failure assessment diagram (FAD), and deformation plasticity failure assessment diagram (DPFAD). This article presents the origin and description of FAD and addresses R6 FAD using J-integral. It details the fracture criteria of BS 7910. The factors to be considered during the use of FAD and the applications of FAD are also reviewed.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001668
EISBN: 978-1-62708-232-7
... Properties and Specifications Property Measured Values Specified Mean Std Dev Value (a) Yield stress, MPa 873.3 ± 27.6 635 minimum Ultimate stress, MPa 968.7 ± 25.9 825 minimum Fracture stress, MPa 676.7 ± 25.8 - Yield strain, m/m 0.0220 ± 0.0007 - Uniform...
Abstract
A detailed investigative failure analysis was conducted on an autoclave which blew apart in a furnace for no apparent reason. Bolt failure resulted in separation of the autoclave lid and subsequent destruction of the furnace. Analysis using metallography, fractography, mechanical testing and exemplar tests were performed on the bolt material. Mechanical engineering analysis and leak-before-break criteria were extensively analyzed. Results led to only one possible conclusion: that an explosion occurred within the autoclave. Suggestions for autoclave design are presented as a result of the analysis.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c9001606
EISBN: 978-1-62708-226-6
... steel was assigned a yield stress of 250 MPa (36 ksi), a tensile strength of 600 MPa (87 ksi), and an elastic modulus of 210 GPa (30460 ksi). The titanium alloy was assigned a yield stress of 800 MPa (116 ksi), a tensile strength of 900 MPa (131 ksi), and an elastic modulus of 116 GPa (16820 ksi). 16...
Abstract
Failures of four different 300-series austenitic stainless steel biomedical fixation implants were examined. The device fractures were observed optically, and their surfaces were examined by scanning electron microscopy. Fractography identified fatigue to be the failure mode for all four of the implants. In every instance, the fatigue cracks initiated from the attachment screw holes at the reduced cross sections of the implants. Two fixation implant designs were analyzed using finite-element modeling. This analysis confirmed the presence of severe stress concentrations adjacent to the attachment screw holes, the fatigue crack initiation sites. Conclusions were reached regarding the design of these types of implant fixation devices, particularly the location of the attachment screw holes. The use of austenitic stainless steel for these biomedical implant devices is also addressed. Recommendations to improve the fixation implant design are suggested, and the potential benefits of the substitution of titanium or a titanium alloy for the stainless steel are discussed.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0091655
EISBN: 978-1-62708-229-7
... above the yield stress of the material. The analysis by the reactor vendor showed the primary bending plus membrane stresses due to service loading to be 78% of the yield strength. Further butt welds in austenitic piping materials can leave residual stresses of the order of the yield strength; therefore...
Abstract
Cracking occurred in an ASME SB166 Inconel 600 safe-end forging on a nuclear reactor coolant water recirculation nozzle while it was in service. The safe-end was welded to a stainless-steel-clad carbon steel nozzle and a type 316 stainless steel transition metal pipe segment. An Inconel 600 thermal sleeve was welded to the safe-end, and a repair weld had obviously been made on the outside surface of the safe-end to correct a machining error. Initial visual examination of the safe-end disclosed that the cracking extended over approximately 85 deg of the circular circumference of the piece. Investigation (visual inspection, on-site radiographic inspection, limited ultrasonic inspection, chemical analysis, 53x metallographic cross sections and SEM images etched in 8:1 phosphoric acid) supported the conclusion that the cracking mechanism was intergranular SCC. No recommendations were made.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001477
EISBN: 978-1-62708-229-7
... Stress 24.75 tpsi 27.5–32 36.9 Ult. Stress 33–41.25 tpsi 36 –42 47.2 Elong. 18 min 24 –16 20 R.O.A. — 50 –31 61 Notched Bar DVM ‘U’ 6 Kpm/cm 2 6.1–12.3 see text In comparing these results it is at once apparent that the values of the yield stress and ultimate stress...
Abstract
During the routine hydraulic pressure test of a boiler following modification, failure by leakage from the drum took place and was traced to a region where extensive multiple cracking had occurred. Catastrophic rupture or fragmentation of the vessel fortunately did not take place. Prior to the test, cracking was present already, extending up to 90% of the wall thickness. Analyses of brownish deposit material did not reveal the presence of any substances likely to cause stress-corrosion cracking of a Ni-Cu-Mo low-alloy steel.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001708
EISBN: 978-1-62708-217-4
... potential contributors to the propeller blade failure, viz., the presence of casting flaws at the low pressure side of the propeller blade and service stresses at this surface that reached approximately 400 MPa. This stress value exceeded the yield strength at the corresponding location of the unbroken...
Abstract
The paper describes the findings from a damaged propeller blade made from Mn-Ni-Al-bronze, commercially known as Superston 70 (ABS Type 5). The blade had broken at the 0.65 pitch radius location, and the fracture occurred in a brittle mode. The findings reported here point to two potential contributors to the propeller blade failure, viz., the presence of casting flaws at the low pressure side of the propeller blade and service stresses at this surface that reached approximately 400 MPa. This stress value exceeded the yield strength at the corresponding location of the unbroken blade by approximately 40%.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006928
EISBN: 978-1-62708-395-9
... of Elastomers Significance and Use of Tensile-Testing Data for Elastomers Modulus of the Compound Tensile Properties Short-Term Tensile Test (ASTM D638 and ISO 527) Yield Stresses Tensile Modulus Compressive Creep Testing Other Strength/Modulus and Deflection Tests Compressive...
Abstract
This article briefly introduces some commonly used methods for mechanical testing. It describes the test methods and provides comparative data for the mechanical property tests. In addition, creep testing and dynamic mechanical analyses of viscoelastic plastics are also briefly described. The article discusses the processes involved in the short-term and long-term tensile testing of plastics. Information on the strength/modulus and deflection tests, impact toughness, hardness testing, and fatigue testing of plastics is also provided. The article describes tension testing of elastomers and fibers. It covers two basic methods to test the mechanical properties of fibers, namely the single-filament tension test and the tensile test of a yarn or a group of fibers.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001811
EISBN: 978-1-62708-241-9
... be observed that the stresses at both ends of the tube are either in compressive or in tensile state; this is because there is no variation in the curves, as the stresses in a body usually balance each other. Whenever the stresses are in unbalanced state, they may induce fracture, cause to yield, or collapse...
Abstract
A deformed steel tube was received for failure analysis after buckling during a heat-treat operation. The tube was subjected to various metallurgical tests as well as nondestructive testing to confirm the presence of residual stresses. The microstructure of the tube was found to be homogenous and had no banded structure. However, x-ray diffraction analysis confirmed the presence of up to 6% retained austenite which likely caused the tube to buckle during the 910 °C heat treating procedure.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006932
EISBN: 978-1-62708-395-9
... ), 1971 , p 4622 10.1063/1.1659831 61. Li J.C.M. and Wu J.B.C. , Pressure and Normal Stress Effects in Shear Yielding , J. Mater. Sci. , Vol 11 , 1976 , p 445 10.1007/BF00540925 62. Li J.C.M. , Behavior and Properties of Shear Bands , Polym. Eng. Sci. , Vol 24...
Abstract
Engineering plastics, as a general class of materials, are prone to the development of internal stresses which arise during processing or during servicing when parts are exposed to environments that impose deformation and/or temperature extremes. Thermal stresses are largely a consequence of high coefficients of thermal expansion and low thermal diffusivities. Although time-consuming techniques can be used to analyze thermal stresses, several useful qualitative tests are described in this article. The classification of internal stresses in plastic parts is covered. The article describes the effects of low thermal diffusivity and high thermal expansion properties, and the variation of mechanical properties with temperature. It discusses the combined effects of thermal stresses and orientation that result from processing conditions. The article also describes the effect of aging on properties of plastics. It explains the use of high-modulus graphite fibers in amorphous polymers.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006767
EISBN: 978-1-62708-295-2
...., multiaxial yield criteria). One failure mode theory is the Rankine (or maximum normal stress) criterion, where the maximum principal stress is used. The other is the Tresca theory based on the maximum shear stress. The Rankine criterion holds that inelastic deformation at a point begins when the maximum...
Abstract
This article describes concepts and tools that can be used by the failure analyst to understand and address deformation, cracking, or fracture after a stress-related failure has occurred. Issues related to the determination and use of stress are detailed. Stress is defined, and a procedure to deal with stress by determining maximum values through stress transformation is described. The article provides the stress analysis equations of typical component geometries and discusses some of the implications of the stress analysis relative to failure in components. It focuses on linear elastic fracture mechanics analysis, with some mention of elastic-plastic fracture mechanics analysis. The article describes the probabilistic aspects of fatigue and fracture. Information on crack-growth simulation of the material is also provided.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003530
EISBN: 978-1-62708-180-1
... project. Frequently, principal stresses and maximum shear stresses are important to the designer because both are used in common failure expressions to calculate maximum load capability (e.g. multiaxial yield criteria). One failure mode theory is the Rankine (or maximum normal stress) criterion, where...
Abstract
This article describes the underlying fundamentals, applications, the relevance and necessity of performing proper stress analysis in conducting a failure analysis. It presents an introduction to the stress analysis of bodies containing crack-like imperfections and the topic of fracture mechanics. The fracture mechanics approach is an important part of stress analysis at the tips of sharp cracks or discontinuities. The article reviews fracture mechanics concepts, including linear elastic fracture mechanics, elastic-plastic fracture mechanics, and subcritical fracture mechanics. It also provides information on the applications of fracture mechanics in failure analysis.
1