1-20 of 44 Search Results for

wrought zinc alloys

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0046737
EISBN: 978-1-62708-229-7
... percentages of zinc (manganese bronze castings and naval brass fasteners) to SCC in the recirculating water in the cooling tower, the castings were replaced with copper alloy C87200 (cast silicon bronze) castings. Replacement bolts and nuts were made from copper alloy C65100 or C65500 (wrought silicon bronze...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003529
EISBN: 978-1-62708-180-1
... the analyst is not very familiar with the alloy system in question. For example, the potential consequences of exceeding impurity limits for zinc and aluminum casting alloys are discussed in various articles in Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, Volume 2 of ASM...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006760
EISBN: 978-1-62708-295-2
... alloys (brasses) in an aqueous solution whereby zinc is selectively removed from the material. The fracture surface, and sometimes the part surfaces, looks red because the zinc has been leached out and copper redeposited. The material is left with many voids, decreasing the strength of the component...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006835
EISBN: 978-1-62708-329-4
... of wrought products. The article addresses the types of flaws or defects that can be introduced during the steel forging process itself, including defects originating in the ingot-casting process. Defects found in nonferrous forgings—titanium, aluminum, and copper and copper alloys—also are covered...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003553
EISBN: 978-1-62708-180-1
... are anodic to the main body of the metal and therefore less resistant to corrosion because of precipitated phases, depletion, enrichment, or adsorption. In wrought high-strength heat treatable aluminum alloys, paths of stress-corrosion cracks are always intergranular, because the thermal treatments...
Book Chapter

Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003548
EISBN: 978-1-62708-180-1
..., such as magnesium or zinc, may be introduced into the galvanic assembly. The most active member will corrode while providing cathodic protection to the other members in the galvanic assembly (for example, zinc anodes in cast iron waterboxes of copper alloy water-cooled heat exchangers). Cathodic protection...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001812
EISBN: 978-1-62708-241-9
... ( 1991 ) 10.1016/1044-5803(91)90015-V 36. ASTM, B154–89 : Standard Test Method for Mercurous Nitrate Test for Copper and Copper Alloys ( 1990 ) 37. ISO 196–1978 (E) Wrought Copper and Copper Alloys—Detection of Residual Stress—Mercury (I) Nitrate Test 38. Lynch S.P...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003507
EISBN: 978-1-62708-180-1
... of working. With increased mechanical working, the dendrites deform and fracture, thus becoming increasingly elongated. A certain degree of alloy segregation occurs in all wrought products, and hot working can alleviate some of the inhomogeneity. However, if the ingot is badly segregated, hot working...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001808
EISBN: 978-1-62708-241-9
... to microbiologically influenced corrosion (MIC) were analyzed to determine if any of the failures could have been avoided or at least predicted. The failures represent a diversity of applications involving typical materials, primarily stainless steel and copper alloys, in contact with a variety of liquids, chemistries...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006783
EISBN: 978-1-62708-295-2
... to the other members in the galvanic assembly (for example, zinc anodes in cast iron waterboxes of copper alloy water-cooled heat exchangers). Cathodic protection is often used for the protection of underground or underwater steel structures. The use of cathodic protection for long-term corrosion...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006785
EISBN: 978-1-62708-295-2
... for the development of season-cracks” ( Ref 3 ), and, in the case of cartridge brass, it was determined that this agency was an environment that contained ammonia. It was concluded that season cracking was the result of the chemical composition of the metal, specifically the amount of zinc in the brass alloy...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006836
EISBN: 978-1-62708-329-4
... low-melting metals and alloys. Tin, lead, and zinc melt below the maximum service temperature of the turbine, which was 462 °C (864 °F). One tin-zinc system had a eutectic melting point of less than 204 °C (400 °F). Such metals can cause liquid-metal embrittlement at temperatures above their melting...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006778
EISBN: 978-1-62708-295-2
... • Multiple intergranular cracks • Voids formed on grain boundaries or wedge-shaped cracks at grain triple points • Reaction scales or internal precipitation • Some cold flow in last stages of failure Contributing factors • Load exceeded the strength of the part • Check for proper alloy and processing...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006784
EISBN: 978-1-62708-295-2
... or inclusions, where it precipitates as molecular (diatomic) hydrogen. This generates substantial pressure, which produces blisters. Shatter cracks , flakes , and fisheyes are terms that describe cracks or the surface appearance of a fracture in castings, forgings, wrought alloys, or weldments...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003508
EISBN: 978-1-62708-180-1
... cast iron low-alloy steel malleable irons pressure die casting semisolid casting squeeze casting FAILURES OF CASTINGS, like the failures of wrought materials, can occur from service conditions, improper design and/or materials selection, manufacturing deficiencies, or a combination...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001809
EISBN: 978-1-62708-180-1
... °F). The addition of tin increases the fatigue resistance and hardness. Zinc in place of tin improves ductility but decreases strength and hardness. Some wrought leaded bearing bronzes are SAE alloys 791 to 794, 797, and 799. The alloy SAE 795 has especially good fatigue resistance. Some castable...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003552
EISBN: 978-1-62708-180-1
... diffusing to internal defects or inclusions, where it precipitates as molecular (diatomic) hydrogen. This generates substantial pressure, which produces blisters. Shatter cracks, flakes, and fisheyes are terms that describe cracks or the surface appearance of a fracture in castings, forgings, wrought alloys...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006828
EISBN: 978-1-62708-329-4
..., mercury, zinc, and certain silver brazing alloys ( Ref 14 ). Silver and cadmium have also been demonstrated to cause SMIE in titanium. Recent studies in 2019 have shown that both Ti-8Al-1Mo-1V and Ti-6Al-2Sn-4Zr-2Mo are susceptible to SMIE in contact with copper, whereas SMIE was not observed with Ti-6Al...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003543
EISBN: 978-1-62708-180-1
... triple points• Reaction scales or internal precipitation• Some cold flow in last stages of failure Contributing factors • Load exceeded the strength of the part• Check for proper alloy and processing by hardness check or destructive testing, chemical analysis• Loading direction may show failure...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006775
EISBN: 978-1-62708-295-2
..., or hcp, zinc) as well as nonmetallic materials (NaCl) indicated that cleavage could be predicted by a critical normal stress law (Sohnke’s law) ( Ref 2 ) dating from 1869. Data and discussions of this work are included in the literature ( Ref 3 – 5 ). Similarly, plastic deformation by slip seemed to obey...