1-20 of 133 Search Results for

wrought aluminum alloys

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 January 2002
Fig. 17 Scanning electron microscope fractograph of fracture surface of a wrought aluminum alloy. Observe that there are distinct regions generated by a ductile fracture process (regions with dimples) and intergranular fracture process (facets). More
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001339
EISBN: 978-1-62708-215-0
... welds were designated C and D. Tensile specimens were machined along the pipe axis to include the weld and base metal. Results of tensile testing are given in Table 2 . Table 3 lists typical tensile properties for wrought aluminum alloy 5083 and as-welded 5083 with 5183 filler metal. The tensile...
Image
Published: 15 January 2021
Fig. 56 Elliptical dimples (a) on the fracture surface of ductile torsion fracture of cast steels. Source: Ref 43 . (b) Mode II dimples on wrought 6061-T6 aluminum alloy tensile specimen. Courtesy of P. Werner, University of Tennessee More
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006835
EISBN: 978-1-62708-329-4
... of wrought products. The article addresses the types of flaws or defects that can be introduced during the steel forging process itself, including defects originating in the ingot-casting process. Defects found in nonferrous forgings—titanium, aluminum, and copper and copper alloys—also are covered...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c9001610
EISBN: 978-1-62708-222-8
... microanalysis ISO Standards: Metallic Materials for Surgical Implants Table 2 ISO Standards: Metallic Materials for Surgical Implants Material Identification Wrought stainless steel ISO 5832-1 Pure titanium ISO 5832-2 Wrought titanium 6-aluminum 4-vanadium alloy ISO 5832-3 Cast...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006785
EISBN: 978-1-62708-295-2
... and industries that have experienced SCC failures include (this list is not exhaustive): Aerospace: Aluminum alloys in structural aircraft components such as landing gear and wing components, stainless steel tubing used as part of the hydraulic or fuel systems, high-strength low-alloy steel...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003553
EISBN: 978-1-62708-180-1
... are anodic to the main body of the metal and therefore less resistant to corrosion because of precipitated phases, depletion, enrichment, or adsorption. In wrought high-strength heat treatable aluminum alloys, paths of stress-corrosion cracks are always intergranular, because the thermal treatments...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006826
EISBN: 978-1-62708-329-4
..., or calcium can be added to hypoeutectic aluminum-silicon alloys to progressively change the silicon lamellae into rounded particles, and phosphorus refines the size of silicon particles in hypereutectic aluminum-silicon alloys ( Ref 26 ). Microsegregation in wrought alloys is a microstructural defect...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003529
EISBN: 978-1-62708-180-1
..., for example, versus an alloy steel or a stainless steel will be helpful. Obviously, the experienced metals chemist will be able to tell that something is a piece of aluminum or a copper alloy or a piece of steel. More unusual alloys may cause problems. However, for many methods, where individual elements must...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001804
EISBN: 978-1-62708-241-9
... , 1989 ) 10.17226/1359 10. ASTM F136-02 , Standard Specification for Wrought Titanium-6 Aluminum—4 Vanadium ELI (Extra Low Interstitial) Alloy for Surgical Implant Applications (UNS R56401) , ( ASTM , West Conshohocken , 2002 ) 11. McEvily A.J. , Metal Failures, Mechanisms...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006760
EISBN: 978-1-62708-295-2
... second-phase particles have a lower melting point than the aluminum alloy itself. When heated to a high enough temperature, these particles will melt and form a low-melting eutectic by mingling with the surrounding area. Upon cooling, a eutectic, rounded structure is formed. Rosettes indicate exposure...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003507
EISBN: 978-1-62708-180-1
... of working. With increased mechanical working, the dendrites deform and fracture, thus becoming increasingly elongated. A certain degree of alloy segregation occurs in all wrought products, and hot working can alleviate some of the inhomogeneity. However, if the ingot is badly segregated, hot working...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006759
EISBN: 978-1-62708-295-2
... Montgomery, and Jerry Buhrow are greatly appreciated. References References 1. “ Standard Test Methods and Definitions for Mechanical Testing of Steel Products ,” A370 – A316 , ASTM 2. “Hardness and Conductivity Inspection of Wrought Aluminum Alloy Parts,” AMS 2658 Rev C, SAE, revised...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003508
EISBN: 978-1-62708-180-1
... iron, gray cast iron, malleable irons, ductile iron, low-alloy steel castings, austenitic steels, corrosion-resistant castings, and cast aluminum alloys are the materials discussed. The article describes the general types of discontinuities or imperfections for traditional casting with sand molds...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001329
EISBN: 978-1-62708-215-0
... of wrought aluminum bronze material (α phase). This microstructure was found in all of the specimens examined. The socket-weld material was dendritic in appearance ( Fig. 5 ), and no evidence of cracking was found in any of the sections examined. Fig. 4 Microstructure of pipe material, composed of α...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003536
EISBN: 978-1-62708-180-1
... of a metal-matrix composite (MMC) containing unidirectionally aligned alumina fibers in the matrix of an aluminum alloy. Figures 2(b) and 2(c) show a fracture profile from the tensile fracture surface of a low-alloy steel specimen. These fracture surfaces were electroplated with copper. As illustrated...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006838
EISBN: 978-1-62708-329-4
... additive manufacturing processes by powder-bed fusion, wire-feed electron beam, and directed-energy (laser) deposition processes. Source: Ref 5 Metallic feedstock for fusion-based AM is typically of weldable, powder metallurgy, and castable alloys that include aluminum alloys, cobalt-chromium...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006775
EISBN: 978-1-62708-295-2
...). Source: Ref 30 There is also a particle size distribution in high-strength, age-hardening aluminum alloys, but different behavior in an aluminum casting alloy has been reported ( Ref 31 ). The iron- and/or silicon-rich phases are the inclusions that are smaller than other phases created...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001789
EISBN: 978-1-62708-241-9
... metallography stress intensity Al-Si bronze (wrought aluminum-silicon bronze) UNS C64200 Ni-Al bronze (wrought nickel-aluminum bronze) UNS C63200 Introduction The good general corrosion performance of bronze alloys in marine environments is well known [ 1 ], and the combination of strength...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001638
EISBN: 978-1-62708-228-0
... and/or aluminum to form a protective layer of chromium or aluminum oxide (Cr 2 O 3 or Al 2 O 3 ) scale to resist oxidation and other forms of high-temperature corrosion. These oxide scales are slow growing. When an alloy is under sulfidation attack, sulfides of chromium, iron, and nickel are likely to form...