Skip Nav Destination
Close Modal
By
Cassio Barbosa, Ibrahim de Cerqueira Abud, Tatiana Silva Barros, Sheyla Santana de Carvalho, Ieda Maria Vieira Caminha
Search Results for
wrought alloys
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 107 Search Results for
wrought alloys
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c0046926
EISBN: 978-1-62708-232-7
... Abstract Over a period of about one year, three RA 330 alloy salt pots from a single heat-treating plant were submitted to failure analysis. All of the pots, which had 9.5 mm thick walls, were used primarily to contain neutral salts at temperatures from about 815 to 900 deg C (1500 to 1650 deg...
Abstract
Over a period of about one year, three RA 330 alloy salt pots from a single heat-treating plant were submitted to failure analysis. All of the pots, which had 9.5 mm thick walls, were used primarily to contain neutral salts at temperatures from about 815 to 900 deg C (1500 to 1650 deg F). However, some cyaniding was also performed in these pots, which, when not in use, were idled at 760 deg C (1400 deg F). It was reported that sludge was removed from the bottom of the pots once a day. Normal pot life varied from about 6 to 20 months. The pots were removed from the furnace, visually inspected, and rotated 120 deg every three weeks to ensure that no single location was overheated for a prolonged period of time. Analysis (visual inspection, chemical analysis, metallographic examination, and x-ray analysis, 60x micrograph etched with 10% oxalic acid) supported the conclusion that the cause of failure of each of the three salt pots was severe intergranular corrosion accompanied by substantial chromium depletion. No recommendations were made.
Image
Published: 01 January 2002
Fig. 17 Scanning electron microscope fractograph of fracture surface of a wrought aluminum alloy. Observe that there are distinct regions generated by a ductile fracture process (regions with dimples) and intergranular fracture process (facets).
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c0046995
EISBN: 978-1-62708-232-7
... of the burners. The tubes had an original wall thickness of 3.0 mm (0.120 in.) and were made of three different alloys: the first was Hastelloy X; the second alloy was RA 333, a wrought nickel-base heat-resistant alloy; and the third was experimental alloy 634, which contained 72% Ni, 4% Cr, and 3.5% Si...
Abstract
Three radiant tubes, made of three different high-temperature alloys, were removed from a carburizing furnace after approximately eight months of service when they showed evidence of failure by collapsing (telescoping) in a region 30 cm (12 in.) from the tube bottoms in the vicinity of the burners. The tubes had an original wall thickness of 3.0 mm (0.120 in.) and were made of three different alloys: the first was Hastelloy X; the second alloy was RA 333, a wrought nickel-base heat-resistant alloy; and the third was experimental alloy 634, which contained 72% Ni, 4% Cr, and 3.5% Si. The three radiant tubes had been operated at a temperature of about 1040 deg C (1900 deg F) to maintain furnace temperatures of 900 to 925 deg C (1650 to 1700 deg F). Analysis (visual inspection and micrographic examination) supported the conclusion that all three tubes failed by corrosion. Recommendations included replacing the material with an alloy, such as RA 333, with a higher chromium content and with an additional element, like silicon, resistant to carburization-oxidation.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c9001610
EISBN: 978-1-62708-222-8
... microanalysis ISO Standards: Metallic Materials for Surgical Implants Table 2 ISO Standards: Metallic Materials for Surgical Implants Material Identification Wrought stainless steel ISO 5832-1 Pure titanium ISO 5832-2 Wrought titanium 6-aluminum 4-vanadium alloy ISO 5832-3 Cast...
Abstract
This investigation characterizes five surgical stainless steel piercings and one niobium piercing that caused adverse reactions during use, culminating with the removal of the jewelry. Chemical composition shows that none of the materials are in accordance with ISO standards for surgical implant materials. Additionally, none of the stainless steel piercings passed the pitting-resistance criterion of ISO 5832-1, which implies that [%Cr + 3.3(%Mo)] > 26. Under microscopic examination, most of the jewelry revealed the intense presence of linear irregularities on the surface. The lack of resistance to pitting corrosion associated with the poor surface finishing of the stainless steel jewelry may induce localized corrosion, promoting the release of cytotoxic metallic ions (such as Cr, Ni, and Mo) in the local tissue, which can promote several types of adverse effects in the human body, including allergic reactions. The adverse reaction to the niobium jewelry could not be directly associated with the liberation of niobium ions or the residual presence of cytotoxic elements such as Co, Ni, Mo, and Cr. The poor surface finish of the niobium jewelry seems to be the only variable of the material that may promote adverse reactions.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006835
EISBN: 978-1-62708-329-4
... of wrought products. The article addresses the types of flaws or defects that can be introduced during the steel forging process itself, including defects originating in the ingot-casting process. Defects found in nonferrous forgings—titanium, aluminum, and copper and copper alloys—also are covered...
Abstract
The primary purpose of this article is to describe general root causes of failure that are associated with wrought metals and metalworking. This includes a brief review of the discontinuities or imperfections that may be common sources of failure-inducing defects in the bulk working of wrought products. The article addresses the types of flaws or defects that can be introduced during the steel forging process itself, including defects originating in the ingot-casting process. Defects found in nonferrous forgings—titanium, aluminum, and copper and copper alloys—also are covered.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001394
EISBN: 978-1-62708-234-1
... that failure resulted from an intergranular attack. Subsequent microscope examination confirmed the generally intergranular mode of failure. A macro-etched section near the fracture revealed a radial arrangement of columnar crystals, indicating that the spindle was a cast and not a wrought product as had been...
Abstract
A 1-in. diam pump spindle fractured within the length covered by the boss of the impeller which was attached to the spindle by means of an axial screw. The pump had been in use in a chemical plant handling mixtures of organic liquids and dilute sulfuric acid having a pH value of 2 to 4 at temperatures of 80 to 90 deg C (176 to 194 deg F). The fracture was unusual in that it was of a fibrous nature, the fibers-which were orientated radially-were readily detachable. The surface of the spindle adjacent to the fracture had an etched appearance and the mode of cracking in this region suggested that failure resulted from an intergranular attack. Subsequent microscope examination confirmed the generally intergranular mode of failure. A macro-etched section near the fracture revealed a radial arrangement of columnar crystals, indicating that the spindle was a cast and not a wrought product as had been presumed. Spectroscope examination showed this particular composition (Fe-23Cr-18Ni-1.8Mo-1.2Si) did not conform to a standard specification and is apparently a proprietary alloy. It was evident that the particular mode of failure was related to the inherent structure of the material.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001108
EISBN: 978-1-62708-214-3
... of wrought high-nickel alloy tubing that is intended to act as an isolation valve for each furnace tube. In such a setup, the pigtail is susceptible to all stress constraints occurring in the line. Consequently, the shape of the pigtail must be flexible, which is achieved with the curved design shown in Fig...
Abstract
The curved parts of exit pigtails made of wrought Incoloy 800H tubing used in steam reforming furnaces failed by performance after a period of service shorter than that predicted by the designers. Examination of a set of tubes consisting of both curved (perforated) and straight parts revealed that the cracks initiated at the outer surface by a combined mechanism of creep and intergranular embrittlement. A smaller grain size resulting from cold bending fabrication procedures for the curved parts was responsible for accelerating the embrittlement. It was recommended that hot bending be used for fabrication of the curved parts. A change of alloy to a low-alloy chromium-molybdenum allay to protect against heat was also suggested.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003507
EISBN: 978-1-62708-180-1
... of working. With increased mechanical working, the dendrites deform and fracture, thus becoming increasingly elongated. A certain degree of alloy segregation occurs in all wrought products, and hot working can alleviate some of the inhomogeneity. However, if the ingot is badly segregated, hot working...
Abstract
This article describes the general root causes of failure associated with wrought metals and metalworking. This includes a brief review of the discontinuities or imperfections that may be the common sources of failure-inducing defects in bulk working of wrought products. The article discusses the types of imperfections that can be traced to the original ingot product. These include chemical segregation; ingot pipe, porosity, and centerline shrinkage; high hydrogen content; nonmetallic inclusions; unmelted electrodes and shelf; and cracks, laminations, seams, pits, blisters, and scabs. The article provides a discussion on the imperfections found in steel forgings. The problems encountered in sheet metal forming are also discussed. The article concludes with information on the causes of failure in cold formed parts.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0046737
EISBN: 978-1-62708-229-7
.... Replacement bolts and nuts should be made from copper alloy C65100 or C65500 (wrought silicon bronze). Castings Cooling towers Dezincification UNS C86300 C86300 C86200 C46400 UNS C86200 UNS C46400 Stress-corrosion cracking Dealloying/selective leaching After 14 months of service, cracks...
Abstract
After 14 months of service, cracks were discovered in castings and bolts used to fasten together braces, posts, and other structural members of a cooling tower, where they were subjected to externally applied stresses. The castings were made of copper alloys C86200 and C86300 (manganese bronze). The bolts and nuts were made of copper alloy C46400 (naval brass, uninhibited). The water that was circulated through the tower had high concentrations of oxygen, carbon dioxide, and chloramines. Analysis (visual inspection, bend tests, fractographs, 50x unetched micrographs, 100x micrographs etched with H4OH, and 500x micrographs) supported the conclusions that the castings and bolts failed by SCC caused by the combined effects of dezincification damage and applied stresses. Recommendations included replacing the castings with copper alloy C87200 (cast silicon bronze) castings. Replacement bolts and nuts should be made from copper alloy C65100 or C65500 (wrought silicon bronze).
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006838
EISBN: 978-1-62708-329-4
... techniques. For example, EBM of titanium alloy results in finer structure compared to conventional casting techniques; corrosion resistance of EBM Ti-6Al-4V is different than wrought forms ( Ref 28 ). Another advantage of the extremely high build temperature in the EBM systems over the SLM systems...
Abstract
This article provides an overview of metal additive manufacturing (AM) processes and describes sources of failures in metal AM parts. It focuses on metal AM product failures and potential solutions related to design considerations, metallurgical characteristics, production considerations, and quality assurance. The emphasis is on the design and metallurgical aspects for the two main types of metal AM processes: powder-bed fusion (PBF) and directed-energy deposition (DED). The article also describes the processes involved in binder jet sintering, provides information on the design and fabrication sources of failure, addresses the key factors in production and quality control, and explains failure analysis of AM parts.
Book Chapter
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001804
EISBN: 978-1-62708-241-9
.../BF00416827 5. Breme J. , Titanium and titanium alloys, biomaterials of preference . Mèmoires et É tudes Scientifiques Revue de Métallurgie , Octobre , 1989 , pp. 625 – 637 6. ISO 5832-1:2007 , Implants for surgery—Metallic materials—Part 1: Wrought stainless steel , Part 2...
Abstract
A stainless steel screw securing an orthopedic implant fractured and was analyzed to determine the cause. Investigators used optical and scanning electron microscopy to examine the fracture surfaces and the microstructure of the austenitic stainless steel from which the screw was made. The results of the study indicated that the screw failed due to fatigue fracture stemming from surface cracks generated by stress concentration likely caused by grooves left by improper machining.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0090114
EISBN: 978-1-62708-229-7
... Abstract The first-stage blades in a model 501D5 gas turbine had 16 cooling holes. After 32,000 h of service, the blades exhibited cracking at the cooling holes. The blade material was wrought Udimet 520 alloy, with nominal composition of 57Ni-19Cr-12Co-6Mo-1W-2Al-3Ti-0.05C-0.005B. The cooling...
Abstract
The first-stage blades in a model 501D5 gas turbine had 16 cooling holes. After 32,000 h of service, the blades exhibited cracking at the cooling holes. The blade material was wrought Udimet 520 alloy, with nominal composition of 57Ni-19Cr-12Co-6Mo-1W-2Al-3Ti-0.05C-0.005B. The cooling holes' surface was not coated. Investigation supported the conclusions that the cracking at the cooling holes was due to grain-boundary oxidation and nitridation at the cooling hole surface, embrittlement and loss of local ductility of the base alloy, temperature gradient from the airfoil surface to the cooling holes, which led to relatively high thermal stresses at the holes located at the thicker sections of the airfoil, and stress concentration of 2.5 at the cooling hole and the presence of relatively high total strain (an inelastic strain of 1.2%) at the cooling hole surface. Recommendations include applying the specially designed methods given in this case study to estimate the metal temperature and stresses in order to predict the life of turbine blades under similar operating conditions.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006826
EISBN: 978-1-62708-329-4
..., or calcium can be added to hypoeutectic aluminum-silicon alloys to progressively change the silicon lamellae into rounded particles, and phosphorus refines the size of silicon particles in hypereutectic aluminum-silicon alloys ( Ref 26 ). Microsegregation in wrought alloys is a microstructural defect...
Abstract
The first part of this article focuses on two major forms of machining-related failures, namely machining workpiece (in-process) failures and machined part (in-service) failures. Discussion centers on machining conditions and metallurgical factors contributing to (in-process) workpiece failures, and undesired surface layers and metallurgical factors contributing to (in-service) machined part failures. The second part of the article discusses the effects of microstructure on machining failures and their preventive measures.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001266
EISBN: 978-1-62708-215-0
... of Other Parts in Same or Similar Service The substitution of cast stainless steel for the traditional wrought stainless steel or cast cobalt-chromium alloy in this application caused a dramatic reduction in strength and an attendant increase in the likelihood of mechanical failure. Cast stainless...
Abstract
A cast stainless steel femoral head replacement prosthesis fractured midway down the stem within 13 months of implantation. Visual examination showed severe “orange peel” around the fracture on the concave side. This effect was not observed on the convex side, which suggested fatigue fracture. Metallographic examination of samples revealed an extremely large grain size and corroborated fatigue fracture. Chemical analysis indicated that the material conformed to the requirements for type 316L stainless steel. Substandard-size tensile bars machined from another prosthesis from the same manufacturer showing identical grain sizes were used for mechanical testing. Tensile tests indicated that the material did not meet the manufacturer's stated strength criteria in the portion of the stem that fractured. The failure was attributed to low strength, which resulted in fatigue. The extremely coarse grain size was considered a major factor in strength reduction.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001339
EISBN: 978-1-62708-215-0
... welds were designated C and D. Tensile specimens were machined along the pipe axis to include the weld and base metal. Results of tensile testing are given in Table 2 . Table 3 lists typical tensile properties for wrought aluminum alloy 5083 and as-welded 5083 with 5183 filler metal. The tensile...
Abstract
The failure mode of through-wall cracking of a butt weld in a 5083-O aluminum alloy piping system in an ethylene plant was identified as mercury liquid metal embrittlement. As a result of this finding, 226 of the more than 400 butt welds in the system were ultrasonically inspected for cracking. One additional weld was found that had been degraded by mercury. A welding team experienced in repairing mercury contaminated piping was recruited to make the repairs. Corrective action included the installation of a sulfur-impregnated charcoal mercury-removal bed and replacement of the aluminum equipment that was in operation prior to the installation of the mercury-removal bed.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001684
EISBN: 978-1-62708-225-9
.... Fontana M. G. , Corrosion Engineering , McGraw-Hill , New York , 1978 . 13. Hummer C.W. Jr. , “ The Corrosion of Metals in Tropical Environments-Copper and Wrought Copper Alloys ,” Materials Protection , Vol. 7 , p. 41 , 1968 . Selected Reference Selected Reference...
Abstract
The steam tug Hercules was an ocean-going and bay tug for 55 years before being retired. It is now being restored by the National Park Service. A broken steam valve was obtained for microstructural examination. The body was gray cast iron, and the stem and seat were brass. The examination centered on corrosion of the brass components. The seat and shaft were alpha brass, with a hardness of 64 and 79 DPH, respectively. A nut held the shaft onto the seat, and was alpha-beta brass with a hardness of 197 DPH. Welded on the end of the shaft was a ring of hard (DPH 294) alpha-beta brass, which seated against the nut. The brass seat and stem show little corrosion. However, the alpha-beta brass nut and welded tip showed extensive dezincification. This process of removal of Zn and the retention of Cu began in the high Zn beta phase, but eventually both phases were attacked. The depth of penetration was consistent with dezincification rates reported in the literature for such brasses in salt water if the valve had been in service about 55 years.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.pulp.c0091622
EISBN: 978-1-62708-230-3
.... If redesign was impossible, an alloy more resistant to Cl-SCC, such as a duplex stainless steel or a high-molybdenum (4 to 6%) austenitic stainless steel, should be used. Chlorides Digesters Paper machines CF-8M UNS J92900 Stress-corrosion cracking A CF-8M (cast type 316) neck liner or manway...
Abstract
A CF-8M (cast type 316) neck liner or manway was removed from the top of a digester vessel. Repeated attempts to repair the part in the field during its life cycle of many years had failed to keep the unit from leaking. The casting was a CF-8M modified with the molybdenum level at the top end of the range. The plate was standard 317L material. The filler metal was type 316, although marginal in molybdenum content. Investigation (visual inspection, chemical analysis, micrographs, and metallographic examination) supported the conclusion that the damage to the neck liner was due to Cl-SCC in an area of debris buildup. It appeared the original casting suffered SCC in a low-oxygen area high in chlorides from repeated wet/dry cycles where there was a buildup of debris. Recommendations included redesigning the neck liner to eliminate the abrupt change where there was debris buildup. If redesign was impossible, an alloy more resistant to Cl-SCC, such as a duplex stainless steel or a high-molybdenum (4 to 6%) austenitic stainless steel, should be used.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001581
EISBN: 978-1-62708-235-8
... – 10.50 10.50 – 13.00 Molybdenum 0.18 0.16 — — Nitrogen 0.022 0.026 — — (a) Type 304L has a max. carbon of 0.035% with nickel of 8.00 to 12.00%. Type 304H has carbon of 0.04 to 0.10%. Wrought austenitic stainless steels, such as alloys 304L, 304, and 304H, have essentially...
Abstract
A heavily worked 304 stainless steel wire basket recrystallized and distorted while in service at 650 deg C (1200 deg F). This case study demonstrates that heavily cold worked austenitic stainless steel components can experience large losses in creep strength, and potentially structural collapse, under elevated temperature service, even at temperatures more than 300 deg C (540 deg F) below the normal solution annealing temperature. The creep strength of the recrystallized 304/304L steel was more than 1000 times less than that achievable with solution annealed 304H. These observations are consistent with limitations (2000 Addendum to ASME Boiler and Pressure Vessel Code) on the use of cold worked austenitic stainless steels for elevated temperature service.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c9001690
EISBN: 978-1-62708-226-6
... in stainless steel, one femoral nail plate in stainless steel, one oral maxillofacial plate for jaw reconstruction in a Ti-6Al-4V alloy, and several Nitinol (wrought nickel-titanium shape memory alloy) orthodontic archwires. The experimental procedures consisted of visual inspection of the samples, macroscopic...
Abstract
This paper summarizes several cases of metallurgical failure analysis of surgical implants conducted at the Laboratory of Failure Analysis of IPT, in Brazil. Investigation revealed that most of the samples were not in accordance with ISO standards and presented evidence of corrosion assisted fracture. Additionally, some components were found to contain fabrication/processing defects that contributed to premature failure. The implant of nonbiocompatible materials results in immeasurable damage to patients as well as losses for the public investment. It is proposed that local sanitary regulation agencies create mechanisms to avoid commercialization of surgical implants that are not in accordance with standards and adopt the practice of retrieval analysis of failed implants. This would protect the public health by identifying and preventing the main causes of failure in surgical implants.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001147
EISBN: 978-1-62708-219-8
... by chemical analysis which shows a very low content of carbon and any alloying elements. The major features to be seen in the micro of wrought iron are the numerous stringy slag inclusions. This is inherent in the process of making wrought iron as it was produced back in the days of the late nineteenth...
Abstract
The century-old Harvard bridge spans the Charles River between Boston and Cambridge. About half of the 23 spans are suspended by wrought iron eyebars. Recent failures of some of these eyebars were examined. The primary cause of failure was the seizure of the joints at the eyebar pin locations as a result of the intrusion of water and salt, and the consequent heavy corrosion of the joint. The seizure of these joints led to high edgewise bending stress in the bars as the bridge underwent thermal movement. The cracking was enhanced by the presence of the corrosive medium so that the cracks were initiated and caused to grow by some combination of corrosion fatigue and stress-corrosion cracking, the former probably being predominant.
1