Skip Nav Destination
Close Modal
Search Results for
wire applications
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 151 Search Results for
wire applications
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001802
EISBN: 978-1-62708-241-9
... Fig. 1 SEM image that shows cup and cone and microvoid coalescence fracture morphology in a NiTi wire Fig. 2 SEM image that shows candy cane structure on outside surface and flat fracture surface on torsional fracture Fig. 3 SEM image of torsional fracture that shows rub...
Abstract
Superelastic nitinol wires that fractured under various conditions were examined under a scanning electron microscope in order to characterize the fracture surfaces, produce reference data, and compare the findings with prior published work. The study revealed that nitinol fracture modes and morphologies are generally consistent with those of ductile metals, such as austenitic stainless steel, with one exception: Nitinol exhibits a unique damage mechanism under high bending strain, where damage occurs at the compression side of tight bends or kinks while the tensile side is unaffected. The damage begins as slip line formation due to plastic deformation, which progresses to cracking at high strain levels. The cracks appear to initiate from slip lines and extend in shear (mode II) manner.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006836
EISBN: 978-1-62708-329-4
...). This approach to producing springs generally dictates that no metal be removed from the wire or strip during working, which allows any existing defects in the raw material to remain. Springs produced in this manner are adequate for many applications because minor surface discontinuities are of little...
Abstract
Mechanical springs are used in mechanical components to exert force, provide flexibility, and absorb or store energy. This article provides an overview of the operating conditions of mechanical springs. Common failure mechanisms and processes involved in the examination of spring failures are also discussed. In addition, the article discusses common causes of failures and presents examples of specific spring failures, describes fatigue failures that resulted from these types of material defects, and demonstrates how improper fabrication can result in premature fatigue failure. It also covers failures of shape memory alloy springs and failures caused by corrosion and operating conditions.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001646
EISBN: 978-1-62708-219-8
... Abstract Locked coil wire ropes, by virtue of their unique design and construction, have specialized applications in aerial ropeways, mine hoist installations, suspension bridge cables, and so forth. In such specialty ropes, the outer layer is constructed of Z-profile wires that provide...
Abstract
Locked coil wire ropes, by virtue of their unique design and construction, have specialized applications in aerial ropeways, mine hoist installations, suspension bridge cables, and so forth. In such specialty ropes, the outer layer is constructed of Z-profile wires that provide not only effective interlocking but also a continuous working surface for withstanding in-service wear. The compact construction and fill-factor of locked coil wire ropes make them relatively impervious to the ingress of moisture and render them less vulnerable to corrosion. However, such ropes are comparatively more rigid than conventional wire ropes with fiber cores and therefore are more susceptible to the adverse effects of bending stresses. The reasons for premature in-service wire rope failures are rather complex but frequently may be attributed to inappropriate wire quality and/or abusive operating environment. In either case, a systematic investigation to diagnose precisely the genesis of failure is desirable. This article provides a microstructural insight into the causes of wire breakages on the outer layer of a 40 mm diam locked coil wire rope during service. The study reveals that the breakages of Z-profile wires on the outer rope layer were abrasion induced and accentuated by arrays of fine transverse cracks that developed on a surface martensite layer.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c9001527
EISBN: 978-1-62708-224-2
... in-between. However, wires are often mechanically damaged after failure. Most nondestructive evaluation (NDE) techniques are not applicable to wire rope failures. Electron microscope fractography of fracture surfaces is essential in failure analysis. Fatigue is the most important fracture mode in wire ropes...
Abstract
Mechanical properties of wire ropes, their chemical composition, and the failure analysis process for them are described. The wires are manufactured from high-carbon, plain carbon steel, with high-strength ropes most often manufactured from AISI Grade 1074. During visual failure examination, the rope, strand, and wire diameters should all be measured. Examination should also address the presence or absence of lubricant, corrosion evidence, and gross mechanical damage. Failed wires can exhibit classic cup-and-cone ductile features, flat fatigue features, and various appearances in-between. However, wires are often mechanically damaged after failure. Most nondestructive evaluation (NDE) techniques are not applicable to wire rope failures. Electron microscope fractography of fracture surfaces is essential in failure analysis. Fatigue is the most important fracture mode in wire ropes. Metallographic features of wire ropes that failed because of ductile overload and fatigue are described.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001385
EISBN: 978-1-62708-215-0
... box during construction of the home. In the third, failure was caused by a marginal installation. Strict adherence to all applicable electrical codes and standards is critical in the case of aluminum wiring. Electrical components not specifically designed for aluminum must never be used with this type...
Abstract
Three instances involving the failure of aluminum wiring at the service entrance to single-family homes are discussed. Arcing led to a fire which severely damaged a home in one case. In a second, the failure sequence was initiated by water intrusion into the service entrance electrical box during construction of the home. In the third, failure was caused by a marginal installation. Strict adherence to all applicable electrical codes and standards is critical in the case of aluminum wiring. Electrical components not specifically designed for aluminum must never be used with this type of wiring. All doors, panels and similar portions of electrical boxes should be secured to prevent damage to surroundings in the event of an electrical fault. If symptoms of arcing are observed, professional service should be sought. The latest designs of connectors for use with aluminum wiring are less susceptible to deviations in installation practice.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006830
EISBN: 978-1-62708-329-4
... (when applicable) acceleration, deceleration, rope speed, rope attachments, number and arrangement of sheaves and drums, conditions producing corrosion and abrasion, and length of rope. Cold-drawn high-carbon steel wire, the type generally used in wire rope, has a modulus of elasticity...
Abstract
The types of metal components used in lifting equipment include gears, shafts, drums and sheaves, brakes, brake wheels, couplings, bearings, wheels, electrical switchgear, chains, wire rope, and hooks. This article primarily deals with many of these metal components of lifting equipment in three categories: cranes and bridges, attachments used for direct lifting, and built-in members of lifting equipment. It first reviews the mechanisms, origins, and investigation of failures. Then the article describes the materials used for lifting equipment, followed by a section explaining the failure analysis of wire ropes and the failure of wire ropes due to corrosion, a common cause of wire-rope failure. Further, it reviews the characteristics of shock loading, abrasive wear, and stress-corrosion cracking of a wire rope. Then, the article provides information on the failure analysis of chains, hooks, shafts, and cranes and related members.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001811
EISBN: 978-1-62708-180-1
... of compositions that will satisfy processing and application requirements. Rivets should be made in accordance with ASTM A 502 ( Ref 2 ). Particular designs or service conditions may require the use of heat-treated alloy steels. Steel Wire Rope Many factors must be considered when investigating a failure...
Abstract
This article focuses on the mechanisms and common causes of failure of metal components in lifting equipment in the following three categories: cranes and bridges, particularly those for outdoor and other low-temperature service; attachments used for direct lifting, such as hooks, chains, wire rope, slings, beams, bales, and trunnions; and built-in members such as shafts, gears, and drums.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001267
EISBN: 978-1-62708-215-0
... fracture Background Music wire springs used in a printer return mechanism failed near the bend in the hook portion of the spring during qualification testing. Applications Music wire springs were specified for a new printer application. The springs were 21-coil music wire springs wound from...
Abstract
Music wire springs used in a printer return mechanism failed near the bend in the hook portion of the spring during qualification testing. Samples were examined in a scanning electron microscope equipped with an energy-dispersive x-ray microprobe. Fatigue fractures originated at rub marks on the inside edge of the spring. An investigation of loads encountered in service indicated that the springs had been loaded to a large fraction of the yield strength. Redesign of the spring mechanism was recommended.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001817
EISBN: 978-1-62708-241-9
.... : Computer modeling of wire strands and ropes part II: finite element-based applications . Adv. Eng. Softw. 42 , 322 – 331 ( 2011 ) 10.1016/j.advengsoft.2011.02.010 11. Miller B.A. : Failure analysis of wire rope . Adv. Mater. Proc. 157 , 6 – 43 ( 2000 ) 12. Krishnadev M...
Abstract
A wire hoisting rope on a drilling rig failed during a lift, after a few cycles of operation, causing extensive damage to support structures. The failure investigation that followed included mechanical property testing and chemical, metallurgical, and finite element analysis. The rope was made from multiple strands of 1095 steel wire. Its chemical composition, ferrite-pearlite structure, and high hardness indicate that the wire is a type of extra improved plow steel (EEIPS grade). The morphologies of the fracture surfaces suggest that the wires were subjected to tensile overloading. This was confirmed by finite element analysis, which also revealed compressive contact stresses between the wires and between the rope and sheave surface. Based on the results, it was concluded that a tensile overload, due to the combined effect of a sudden load and undersized sheave, is what ultimately caused the rope to fail.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001547
EISBN: 978-1-62708-225-9
... A need for careful consideration of the stress-corrosion properties of candidate materials for spring applications has been demonstrated by stress-corrosion test results for 17-7 PH CH900 and for Custom 455 CH850 stainless steels. For 0.18 in. (5 mm) diameter 17-7 PH wire, the CH900 condition...
Abstract
Life testing of cyclic loaded, miniature extension springs made of 17-7 PH stainless steel wire and AISI 302 Condition B stainless steel wire has shown end hook configuration to be a major source of weakness. To avoid cracking and subsequent fatigue failure, it was found that stress concentration depended on end hook bend sharpness. Also, interference fits are to be avoided in the end hooks of small springs. Additionally, a need for careful consideration of the stress-corrosion properties of candidate materials for spring applications has been demonstrated by stress-corrosion test results for 17-7 PH CH900 and for Custom 455 CH850 stainless steels. Laboratory testing of these two materials in the form of compression springs confirmed the superiority of the 17-7 PH over Custom 455.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0048026
EISBN: 978-1-62708-224-2
... to 33 cm and pitched roll plates were installed between the tanks where rolling of coils was required. Cranes Vibration Steel wire rope Fatigue fracture The wire rope on a cleaning-line crane broke while lifting a normal load of coils. This rope, which was specified for the application...
Abstract
The 11 mm diam 8 x 19 fiber-core rope, constructed from improved plow steel wire, on the cleaning-line crane failed while lifting a normal load of coils after five weeks of service. Several broken wires and fraying of the fiber core were revealed by visual examination of a section of the wire rope adjacent to the fracture. Fatigue cracks originating from both sides of the wire were revealed by microscopic examination of a longitudinal section of a wire. The diam of the sheave on the bale (27 cm) was found to be slightly below that specified for the 11 mm diam rope. It was observed that the sudden shock received by the hook in rolling the coils over the edge of the rinse tank after pickling caused vibration which was most severe at the clamped end of the rope. It was concluded that this caused the fatigue failure of the rope. As a corrective measure, the diam of the sheave was increased to 33 cm and pitched roll plates were installed between the tanks where rolling of coils was required.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001118
EISBN: 978-1-62708-214-3
... the minimum tolerable defect size was also recommended. Aircraft components Commercial planes Lubrication systems Springs (elastic) Wire 321 UNS S32100 Metalworking-related failures Fatigue fracture Background Two stainless steel springs in oil ring lip seals failed. Applications...
Abstract
Failure of AISI type 321 stainless steel internal springs from newly manufactured lip seals on a shaft between a turbine power unit and a pump in a commercial aircraft secondary unit was investigated. Examination of the coils from two failed springs showed that both had failed by fatigue. The springs contained drawing defects that served as the fatigue crack initiation sites. It was recommended that the wire drawing process be investigated for various levels of steel cleanliness to predict the incidence of drawing defects at the wire surface. Stress analysis to determine the minimum tolerable defect size was also recommended.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001680
EISBN: 978-1-62708-221-1
... (Other, miscellaneous, or unspecified) wear Fatigue fracture Introduction Wire ropes are used in many heavy industrial applications, including mines, offshore oil rigs, and barges. Premature failure of ropes can be costly in any application. In mining applications, failures become not only...
Abstract
The fatigue failure of a wire rope used on a skip hoist in an underground mine has been studied as part of the ongoing research by the Bureau of Mines into haulage and materials handling hazards in mines. Macroscopic correlation of individual wire failures with wear patterns, fractography, and microhardness testing were used to gain an understanding of the failure mechanism. Wire failures occurred predominantly at characteristic wear sites between strands. These wear sites are identifiable by a large reduction in diameter; however, reduction in area was not responsible for the location of failure. Fractography revealed multiple crack initiation sites to be located at other less noticeable wear sites or opposite the characteristic wear site. Microhardness testing revealed hardening, and some softening, at wear sites.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001033
EISBN: 978-1-62708-214-3
.... Engine components Propulsion systems Space flight Wire mesh 304 UNS S30400 Fatigue fracture Background A Stirling engine was examined after an aborted test run. It was discovered that the individual regenerator screens had suffered substantial damage. Applications The Stirling engine...
Abstract
An investigation of a Stirling engine after an aborted test run revealed that the regenerator screens had suffered substantial damage. During the run, the individual screens oscillated as the helium working fluid was shuttled through the regenerator. In localized areas, the 41 mu m (1600 mu in.) diam type 304 stainless steel wire screening had been torn and pieces were missing. Scanning electron microscope revealed that the fracture had occurred at wire crossover locations by a fatigue mechanism. The problem was solved by sintering the individual screens into a single unit.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048117
EISBN: 978-1-62708-235-8
... Abstract Two outer valve springs made from air-melted 6150 pretempered steel wire broke during production engine testing. The springs were 50 mm in OD and 64 mm in free length, had five coils and squared-and-ground ends, and were made of 5.5 mm diam wire. It was revealed that fracture...
Abstract
Two outer valve springs made from air-melted 6150 pretempered steel wire broke during production engine testing. The springs were 50 mm in OD and 64 mm in free length, had five coils and squared-and-ground ends, and were made of 5.5 mm diam wire. It was revealed that fracture was nucleated by an apparent longitudinal subsurface defect. The defect was revealed by microscopic examination to be a large pocket of nonmetallic inclusions (alumina and silicate particles) at the origin of the fracture. Partial decarburization of the steel was observed at the periphery of the pocket of inclusions. Torsional fracture was indicated by the presence of beach marks at a 45 deg angle to the wire axis. It was established that the spring fractured by fatigue nucleated at the subsurface defect.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001778
EISBN: 978-1-62708-241-9
... or patented wire rods by single or multipass cold drawing, have many engineering applications including the manufacture of springs, needles, wire ropes, screws, and so forth. In rope manufacturing, steel wires are laid helically in different layers to make strands. The strands are laid helically to make...
Abstract
A locked coil track rope (LCTR) is essentially composed of wires (round and rail-shaped) laid helically in different layers. These wire ropes are sometimes used in conveyors carrying empty and loaded buckets in mining areas. During service, such wire ropes may fail prematurely due to disintegration/failure of individual groups of wires. To understand the genesis of LCTR wire failures, a detailed metallurgical investigation of failed rope wires was made and included visual examination, optical microscopy, scanning electron microscopy (SEM), and electron probe microanalysis (EPMA). Two types of failed wires were investigated; one is from a 40 mm diameter locked coil track rope and the other from a 53 mm locked coil track rope. Optical microscopy of failed round wires in the 53 mm diameter rope clearly revealed fully decarburized layers at the surface and a few grain-boundary cracks. From the location of the failure, it was clear that apart from static tensile loads, the wire ropes had been subjected to bending and unbending loads near the saddle, as fully loaded or empty buckets traveled access the conveyor. The SEM studies confirmed that the fracture had been caused by initiation of fatigue cracks in the decarburized zone under conditions of repeated bending and unbending stresses superimposed on the static tensile load.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c0048039
EISBN: 978-1-62708-219-8
...-diameter wires behaved in a ductile manner under excessive loads before ultimate failure. The microstructure and cleanness of the material appeared normal for the application and could not be associated with the broken wires examined. Selected References Selected References • Fatigue Failures...
Abstract
One of six cables on a passenger elevator was found fractured during a routine inspection. The cable is made of 16-mm steel wire rope designated 8 x 19 G Preformed Extra High Strength Special Traction Elevator Cable with fiber core. Samples of wire from the cable revealed two types of fractures: flat-type fractures were observed in 1.2 and 1 mm diam wires and cup-and-cone fractures were observed in 0.6 mm diam wires. A nick observed in the side of one of the larger wires was found to be rusted. Beach marks radiating inward, indicative of fatigue cracking, were also revealed. The smaller wires were found to be slightly oxidized and behaved in a ductile manner under excessive loads before ultimate failure. Flat-type fractures were believed to have resulted from cyclic torsional stresses along with longitudinal cracking. Restriction of free movement of the socket-end in the shackle was found to have promoted fracture due to increased magnitude of stresses. Mechanical damage to surfaces of wires was concluded to be sufficient to cause fatigue cracking under the stresses encountered in service.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001518
EISBN: 978-1-62708-228-0
..., as specified in AS 3791-1991 Hydraulic Hoses. This type of hose consisted of an inner tube of oil-resistant synthetic rubber, a single medium-carbon steel wire braid reinforcement, and an oil-and-weather resistant synthetic rubber cover. The wire braiding was found to be severely corroded in the area...
Abstract
A fireball engulfed half of a drill rig while in the process of drilling a shot hole. Subsequent investigation revealed the cause of the fire was the failure of the oil return hose to the separator/receiver in the air compressor. The failed hose was a 50.8 mm 100R1 type hose, as specified in AS 3791-1991 Hydraulic Hoses. This type of hose consisted of an inner tube of oil-resistant synthetic rubber, a single medium-carbon steel wire braid reinforcement, and an oil-and-weather resistant synthetic rubber cover. The wire braiding was found to be severely corroded in the area of the failure zone. The physical cause of the hose failure was by severe localized corrosion of the layer of reinforcing braid wire at the transition between the coupling and the hose at the end of the ferrule. This caused a reduction of the wire cross-sectional area to the extent that the wires broke. Once the majority of the braid wires were broken there was not enough intrinsic strength in the rubber inner hose to resist the normal operating pressures.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0065826
EISBN: 978-1-62708-233-4
... to be inadequate for the application. The metallurgist decided to replace these wires with a more corrosion-resistant alloy, but did not realize that his choice, under the operating conditions, was unwise. The more expensive type 304 stainless steel wire failed catastrophically after only a week of service time...
Abstract
The wires used in a wet precipitator for cleaning the gases coming off a basic oxygen furnace failed. The system consisted of six precipitators, three separate dual units, each composed of four zones. Each zone contained rows of wires (cold drawn AISI 1008 carbon steel) suspended between parallel collector plates. It was determined that the 1008 wires failed because of corrosion fatigue. It was decided to replace all of the wires in the two zones with the highest rates of failure with cold-drawn type 304 austenitic stainless steel wire. These expensive wires, however, failed after a week by transgranular SCC. Annealed type 430 ferritic stainless steel was subsequently suggested to prevent further failures.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c9001607
EISBN: 978-1-62708-231-0
... the application of a constant load to the line. This is achieved by moving a wire rope around the pulley in a 1:5 ratio and attaching the rope to the contact wire and a counterweight ( Fig. 1 ). This arrangement allows the weight to move, thus absorbing/compensating for length variations experienced...
Abstract
Wire ropes, pulleys, counterweights, and connecting systems are used for auto tensioning of contact wires of electric railways. A wire rope in one such auto tensioning system suffered premature failure. Failure investigation revealed fatigue cracks initiating at nonmetallic inclusions near the surface of individual wire strands in the rope. The inclusions were identified as Al-Ca-Ti silicates in a large number of stringers, and some oxide and nitride inclusions were also found. The wire used in the rope did not conform to the composition specified for AISI 316 grade steel, nor did it satisfy the minimum tensile strength requirements. Failure of the wire rope was found to be due to fatigue; however, the ultimate fracture of the rope was the result of overload that occurred after fatigue failure had reduced the number of wire strands supporting the load.
1