Skip Nav Destination
Close Modal
Search Results for
white cast irons
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 93 Search Results for
white cast irons
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0047352
EISBN: 978-1-62708-221-1
... Abstract Two broken ball-mill liners from a copper-mine ore operation were submitted for failure analysis. These liners failed prematurely, having reached less than 20% of their expected life. The chemical composition of the liners was within specifications for high-chromium white cast iron...
Abstract
Two broken ball-mill liners from a copper-mine ore operation were submitted for failure analysis. These liners failed prematurely, having reached less than 20% of their expected life. The chemical composition of the liners was within specifications for high-chromium white cast iron. The two broken liners were sand blasted for visual inspection and subsequent metallography and hardness testing. Many cracks were found externally and on the undersides. There were also signs of mechanical damage that occurred inside the mill before detection of the failures. The underside cracking is significant because the user advised that the liners were not backed in the installation. Cracking was present in the microstructures of both liners. These cracks tend to fracture the brittle carbide phase first; once nucleated, the sharp cracks can propagate and grow to critical dimensions, which eventually induces complete failure to the load-bearing section. The premature failure of these liners was caused by severe localized overstress conditions due to localized impact in service. Proper backing of shell liners should be ensured to reduce the effect of impact forces in the ball mill.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0047347
EISBN: 978-1-62708-234-1
... Abstract A high-chromium white cast iron shell liner installed in an ore crusher sustained impact damage in the course of operation. Visual-optical examination revealed horizontal cracks on the surface of the liner along with particles that had fractured off. Metallographic examination...
Abstract
A high-chromium white cast iron shell liner installed in an ore crusher sustained impact damage in the course of operation. Visual-optical examination revealed horizontal cracks on the surface of the liner along with particles that had fractured off. Metallographic examination indicated a heavily deformed surface layer with chip formation at the wear surface. The chemical composition of the liner was found to be Fe-2.74C-0.75Mn-0.55Si-0.51Ni-19.4Cr-1.15M. This alloy is highly resistant to abrasive wear, yet at the same time, prone to chipping because little plastic displacement will occur at the surface. The liner failed as a result of severe abrasion caused by the impact of taconite rock. This was a material-selection problem in that the wrong alloy was used for a condition not anticipated in the original choice.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001058
EISBN: 978-1-62708-214-3
... Abstract A white cast iron water-line plug in a fire sprinkler systems split during leak repair. Examination revealed no material flaws, fatigue, or excessive corrosion. The plug head exhibited signs of excessive loads used in attempts to force the plug farther into the pipe. The evidence...
Abstract
A white cast iron water-line plug in a fire sprinkler systems split during leak repair. Examination revealed no material flaws, fatigue, or excessive corrosion. The plug head exhibited signs of excessive loads used in attempts to force the plug farther into the pipe. The evidence obtained indicated that the failure resulted from human error.
Image
in Rapid Wear of Shell Liner Due to Severe Abrasion
> ASM Failure Analysis Case Histories: Failure Modes and Mechanisms
Published: 01 June 2019
Fig. 1 Wear surface of a shell liner cast from high-chromium white iron. The chip formation initiates at points of the brittle carbide (Cr 7 C 3 ) fracture. 125x
More
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c0091853
EISBN: 978-1-62708-223-5
... as it wears. The ratio of iron to quartz is approximately 0.5. Because no indications of severe impact wear were noted, and because fracture and spalling were not observed, a harder plate material such as white cast iron or a work-hardening manganese steel could be used. Either material would lead to a larger...
Abstract
A 230 mm (9 in.) diameter disk attrition mill was scheduled to grind 6.35 mm (0.25 in.) diameter quartz particles to a 0.075 mm (0.003 in.) diameter powder. Due to severe wear on the grinding plates, however, the unit was unable to complete the task of grinding the rock. The mill consisted of a heavy gray cast iron frame, a gravity feeder port, a runner, and a heavy-duty motor. The frame and gravity feeder weighed over 200 kg (440 lb) and, in some areas, was over 25 mm (1 in.) thick. To obtain the operating speed of 200 rpm, a gear system was used to transmit the torque from the 2-hp motor. The runner consisted of a 50 mm (2 in.) diameter shaft and two gray cast iron grinding plates. Investigation (visual inspection, historical review, photographs, model testing of new plates, chemical analysis, hardness testing, optical macrographs, and optical micrographs) supported the conclusion that the primary feed material was harder than the grinding plates, causing wear and eventual failure. Recommendations included reducing the clearance between the flutes and possible material changes.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0047234
EISBN: 978-1-62708-233-4
... Abstract Several deburring drums that fractured were filled with abrasive, water, and small parts, such as roller bearing rollers, and rotated on their axis at 36 rpm. Cracks were discovered very early in the service lives of these high-chromium white iron cast structures. All of the fractures...
Abstract
Several deburring drums that fractured were filled with abrasive, water, and small parts, such as roller bearing rollers, and rotated on their axis at 36 rpm. Cracks were discovered very early in the service lives of these high-chromium white iron cast structures. All of the fractures were through bolt holes in the mounting flange. The holes had a sharp edge and exhibited uneven wear on the inside diameter. In operation, the mounting bolts were frequently found to be loose and in at least one case broken off. A 25x scanning electron microscopy (SEM) fractograph from near this fracture-initiation area showed fatigue striations. No casting or metallurgical structural defects were found that could explain the failures. This evidence supports the conclusion that cracking was a result of the stress-concentration site at the bolt holes where a fatigue-initiated fracture occurred. Recommendations included that the radii be increased at the sharp corners and that lock-wiring be used to secure against bolt loosening.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001776
EISBN: 978-1-62708-241-9
... and excellent wear resistance [ 2 ]. While pearlitic white cast iron, martensitic cast iron, and austenitic manganese steel are all abrasion-resistant materials, martensitic cast irons may wear more slowly than the other materials under heavy blows or high compressive and structural stresses of crusher jaws...
Abstract
In this article, we report the outcome of an investigation made to uncover the premature fracture of crusher jaws produced in a local foundry. A crusher jaw that had failed while in service was studied through metallographic techniques to determine the cause of the failure. Our investigation revealed that the reason for the fracture was the presence of large carbides at the grain boundaries and in the grain matrix. This led to the formation of microcracks that propagated along the grain boundaries under in-service working forces. It is also believed that the precipitation of carbides at the grain boundaries may have occurred because of improper heat treatment, but not because of a deficiency in composition.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047297
EISBN: 978-1-62708-235-8
... Abstract Door-closer cylinder castings manufactured of class 30 gray iron were breaking during machining. The manufacturing source reported that a random sampling of castings from this lot had hardnesses from 180 to 210 HRB. Based on the color of the components, heat treatment of these castings...
Abstract
Door-closer cylinder castings manufactured of class 30 gray iron were breaking during machining. The manufacturing source reported that a random sampling of castings from this lot had hardnesses from 180 to 210 HRB. Based on the color of the components, heat treatment of these castings was suspected. Metallurgical examination on two representative castings supported the conclusions that the cracks in these gray iron door closers that were present either before or during the heat treatment were attributed to a substandard microstructure of the wrong type of graphite combined with excessive ferrite. This anomalous structure is caused by shortcomings in the foundry practice of chemical composition, solidification, and inoculation control. Judging from the microstructure, the strength of the material was lower than desired for class 30 gray iron, and the suspected heat treatment further reduced the strength. Recommendations included that the chemistry and inoculation should be controlled to produce type A graphite structure. The chemistry control should aim for a carbon equivalent close to 4.3% to achieve adequate fluidity for thin sections and to alleviate gas defects.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001307
EISBN: 978-1-62708-215-0
... metal 153, 185, 141, 146, 156, 1129 155, 143, 130, 140, 131 Weld bead on inner surface 430, 426, 401 Weld bead on outer surface 366, 385, 397 Discussion The spring hanger was made from ferritic malleable cast iron. This is, of course, produced by the heat treatment of a white iron...
Abstract
The right front spring hanger on a dual rear axle of the tractor of a tractor-trailer combination failed, causing the vehicle to roll-over. The hanger was made from malleable cast iron that had been heat treated to produce a decarburized surface layer and a pearlitic transition layer. It had been repair welded after breaking into two pieces longitudinally in a prior incident, using cast iron as weld metal. The repair weld bead on both surfaces missed the fracture over 15 to 20% of their lengths. The incomplete repair weld and brittleness of the weld metal and heat-affected zones led to the failure.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003560
EISBN: 978-1-62708-180-1
... crushers, and earth-moving tools, the manganese steels have been partially displaced by low-alloy quenched-and-tempered steels and martensitic white irons ( Ref 10 ). High-Stress, Or Grinding, Abrasion High-stress, or grinding, abrasion occurs when abrasive particles are compressed between two solid...
Abstract
Wear, a form of surface deterioration, is a factor in a majority of component failures. This article is primarily concerned with abrasive wear mechanisms such as plastic deformation, cutting, and fragmentation which, at their core, stem from a difference in hardness between contacting surfaces. Adhesive wear, the type of wear that occurs between two mutually soluble materials, is also discussed, as is erosive wear, liquid impingement, and cavitation wear. The article also presents a procedure for failure analysis and provides a number of detailed examples, including jaw-type rock crusher wear, electronic circuit board drill wear, grinding plate wear failure analysis, impact wear of disk cutters, and identification of abrasive wear modes in martensitic steels.
Book Chapter
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006790
EISBN: 978-1-62708-295-2
...-moving tools, the manganese steels have been partially displaced by low-alloy quenched-and-tempered steels and martensitic white irons ( Ref 10 ). High-Stress, or Grinding, Abrasion High-stress, or grinding, abrasion occurs when abrasive particles are compressed between two solid surfaces...
Abstract
Engineered components fail predominantly in four major ways: fracture, corrosion, wear, and undesirable deformation (i.e., distortion). Typical fracture mechanisms feature rapid crack growth by ductile or brittle cracking; more progressive (subcritical) forms involve crack growth by fatigue, creep, or environmentally-assisted cracking. Corrosion and wear are another form of progressive material alteration or removal that can lead to failure or obsolescence. This article primarily covers the topic of abrasive wear failures, covering the general classification of wear. It also discusses methods that may apply to any form of wear mechanism, because it is important to identify all mechanisms or combinations of wear mechanisms during failure analysis. The article concludes by presenting several examples of abrasive wear.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003508
EISBN: 978-1-62708-180-1
... iron, gray cast iron, malleable irons, ductile iron, low-alloy steel castings, austenitic steels, corrosion-resistant castings, and cast aluminum alloys are the materials discussed. The article describes the general types of discontinuities or imperfections for traditional casting with sand molds...
Abstract
This article focuses on the general root causes of failure attributed to the casting process, casting material, and design with examples. The casting processes discussed include gravity die casting, pressure die casting, semisolid casting, squeeze casting, and centrifugal casting. Cast iron, gray cast iron, malleable irons, ductile iron, low-alloy steel castings, austenitic steels, corrosion-resistant castings, and cast aluminum alloys are the materials discussed. The article describes the general types of discontinuities or imperfections for traditional casting with sand molds. It presents the international classification of common casting defects in a tabular form.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c0089617
EISBN: 978-1-62708-232-7
... Abstract A forged 4130 steel cylindrical permanent mold, used for centrifugal casting of gray- and ductile-iron pipe, was examined after pulling of the pipe became increasingly difficult. In operation, the mold rotated at a predetermined speed in a centrifugal casting machine while the molten...
Abstract
A forged 4130 steel cylindrical permanent mold, used for centrifugal casting of gray- and ductile-iron pipe, was examined after pulling of the pipe became increasingly difficult. In operation, the mold rotated at a predetermined speed in a centrifugal casting machine while the molten metal, flowing through a trough, was poured into the mold beginning at the bell end and ending with the spigot end being poured last. After the pipe had cooled, it was pulled out from the bell end of the mold, and the procedure was repeated. Investigation supported the conclusion that failure of the mold surface was the result of localized overheating caused by splashing of molten metal on the bore surface near the spigot end. In addition, the mold-wash compound (a bentonite mixture) near the spigot end was too thin to provide the proper degree of insulation and to prevent molten metal from sticking to the bore surface. Recommendations included reducing the pouring temperatures of the molten metal and spraying a thicker insulating coating onto the mold surface.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006831
EISBN: 978-1-62708-329-4
... some of the common defects in each category. The following sections reference the terminology introduced in Table 1 . Failures Related to Gray Iron Castings The cast iron family consists of several different alloys, including gray iron, ductile iron, malleable iron, white iron, compacted...
Abstract
The information provided in this article is intended for those individuals who want to determine why a casting component failed to perform its intended purpose. It is also intended to provide insights for potential casting applications so that the likelihood of failure to perform the intended function is decreased. The article addresses factors that may cause failures in castings for each metal type, starting with gray iron and progressing to ductile iron, steel, aluminum, and copper-base alloys. It describes the general root causes of failure attributed to the casting material, production method, and/or design. The article also addresses conditions related to the casting process but not specific to any metal group, including misruns, pour shorts, broken cores, and foundry expertise. The discussion in each casting metal group includes factors concerning defects that can occur specific to the metal group and progress from melting to solidification, casting processing, and finally how the removal of the mold material can affect performance.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001591
EISBN: 978-1-62708-227-3
... Navigation Company. This latter company was better known as the White Star Line, named after the company pennant, a white star on a red field. The White Star Line was owned by the International Mercantile Marine Company, which was controlled by J.P. Morgan. After their meal, the two men planned the future...
Abstract
On 14 April 1912, at 11:40 p.m., Greenland Time, the Royal Mail Ship Titanic on its maiden voyage was proceeding westward at 21.5 knots (40 km/h) when the lookouts on the foremast sighted a massive iceberg estimated to have weighed between 150,000 to 300,000 tons at a distance of 500 m ahead. Immediately, the ship’s engines were reversed and the ship was turned to port (left) in an attempt to avoid the iceberg. In about 40 sec, the ship struck the iceberg below the waterline on its starboard (right) side near the bow. The iceberg raked the hull of the ship for 100 m, destroying the integrity of the six forward watertight compartments. Within 2 h 40 min the RMS Titanic sank. Metallurgical examination and chemical analysis of the steel taken from the Titanic revealed important clues that allow an understanding of the severity of the damage inflicted on the hull. Although the steel was probably as good as was available at the time the ship was constructed, it was very inferior when compared with modern steel. The notch toughness showed a very low value (4 J) for the steel at the water temperature (-2 deg C) in the North Atlantic at the time of the accident.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006793
EISBN: 978-1-62708-295-2
... , 33 ). These are critical in determining the development of the white layer and the subsequent crack nucleation and wear debris formation. Work has shown that treatment of materials such as cast iron or stainless steel via techniques such as laser hardening ( Ref 34 , 35 ), induction hardening...
Abstract
Impact or percussive wear is defined as the wear of a solid surface that is due to percussion, which is a repetitive exposure to dynamic contact by another body. Impact wear, however, has many analogies to the field of erosive wear. The main difference is that, in impact wear situations, the bodies tend to be large and contact in a well-defined location in a controlled way, unlike erosion where the eroding particles are small and interact randomly with the target surface. This article describes some generic features and modes of impact wear of metals, ceramics, and polymers. It discusses the processes involved in testing and modeling of impact wear, and includes two case studies.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001084
EISBN: 978-1-62708-214-3
... Abstract Failure analysis was performed on a fractured impeller from a boiler feed pump of a fossil fuel power plant. The impeller was a 12% Cr martensitic stainless steel casting. The failure occurred near the outside diameter of the shroud in the vicinity of a section change at the shroud...
Abstract
Failure analysis was performed on a fractured impeller from a boiler feed pump of a fossil fuel power plant. The impeller was a 12% Cr martensitic stainless steel casting. The failure occurred near the outside diameter of the shroud in the vicinity of a section change at the shroud/vane junction. Sections cut from the impeller were examined visually and by SEM fractography. Microstructural, chemical, and surface analyses and surface hardness tests were conducted on the impeller segments. The results indicated that the impeller failed in fatigue with casting defects increasing stress and initiating fracture. In addition, the composition and hardness of the impeller did not meet specifications. Revision of the casting process and institution of quality assurance methods were recommended.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c0047328
EISBN: 978-1-62708-231-0
... engines in which no corrosion inhibitor had been added to the cooling water. It must therefore be assumed that the fatigue strength of the cast iron was considerably reduced by the corrosiveness of the cooling medium. In this case also, the part played by corrosion in the formation of the cracks could...
Abstract
Cracks formed on cylinder inserts from a water-cooled locomotive diesel engine, on the water side in the neck between the cylindrical part and the collar. Cracks were revealed by magnetic-particle inspection. As a rule, several parallel cracks had appeared, some of which were very fine. The part played by corrosion in the formation of the cracks was demonstrated with the help of metallographic techniques. The surface regions of the cracks widened into funnel form, which is a result of the corrosive influence of the cooling water. Actual corrosion pits could not be found indicating that the vibrational stresses had a greater share in the damage than the corrosive influence. Cracks appeared initially only in those engines in which no corrosion inhibitor had been added to the cooling water. The cracking was caused by corrosion fatigue. The combined presence of a corrosive medium and cyclical operating stress was needed to cause cracks. No cracks appeared when corrosion inhibitor was added to the cooling water.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001530
EISBN: 978-1-62708-225-9
... one failed catastrophically within a few days, generating a huge amount of metallic wear debris and causing pitting on the surface of the cast iron roller. Following the failure, samples were collected from both good and failed bearings. The samples were analyzed chemically and their microstructures...
Abstract
This paper describes an investigation on the failure of a large leaded bronze bearing that supports a nine-ton roller of a plastic calendering machine. At the end of the normal service life of a good bearing, which lasted for seven years, a new bearing was installed. However the new one failed catastrophically within a few days, generating a huge amount of metallic wear debris and causing pitting on the surface of the cast iron roller. Following the failure, samples were collected from both good and failed bearings. The samples were analyzed chemically and their microstructures examined. Both samples were subjected to accelerated wear tests in a laboratory type pin-on-disk apparatus. During the tests, the bearing materials acted as pins, which were pressed against a rotating cast iron disk. The wear behaviors of both bearing materials were studied using weight loss measurement. The worn surfaces of samples and the wear debris were examined by light optical microscope, SEM, and energy-dispersive x-ray microanalyzer. It was found that the laboratory pin-on-disk wear data correlated well with the plant experience. It is suggested that the higher lead content ~18%) of the good bearing compared with 7% lead of the failed bearing helped to establish a protective transfer layer on the worn surface. This transfer layer reduced metal-to-metal contact between the bearing and the roller and resulted in a lower wear rate. The lower lead content of the failed bearing does not allow the establishment of a well-protected transfer layer and leads to rapid wear.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.9781627083294
EISBN: 978-1-62708-329-4