1-20 of 1294 Search Results for

welding

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c0089752
EISBN: 978-1-62708-219-8
...-fabricated in 12 m (40 ft) lengths, then shop welded into 24 m (80 ft) lengths. Field assembly was with bell-and-spigot joints. Investigation (visual inspection and Charpy V-notch testing) supported the conclusion that brittle fracture of the aqueduct pipe was attributed to a combination of stress...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047636
EISBN: 978-1-62708-217-4
... of failure. In one, the threaded boss had separated from the elbow at the weld. In the other, the failure was by fracture of the elbow near the flange. The separation of the threaded boss from the elbow was due to a poor welding procedure. Crack propagation was accelerated by fatigue caused by cyclic service...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0091528
EISBN: 978-1-62708-229-7
... of these cracks, which had penetrated the pipe wall, were responsible for leaks detected in a hydrostatic test performed during a general inspection after seven years of service. Investigation (visual inspection, visual and ultrasonic weld examination, water analysis, and chemical analysis) supported...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001429
EISBN: 978-1-62708-227-3
... to the vertical axis of the original ingot. The crankshaft had not been stress-relieved after a welding operation had been carried out. The only satisfactory course to follow when dealing with a highly stressed part in which defects of the type in question are revealed during machining is to scrap the forging...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001206
EISBN: 978-1-62708-235-8
... Abstract A number of seamless pipe nipples of 70 mm diam and 3.5 mm wall thickness made of steel type 35.8 were oxyacetylene welded to collectors of greater wall thickness with a round bead. X-ray examination showed crack initiation in the interior of the nipples close to the root of the weld...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0089738
EISBN: 978-1-62708-235-8
... Abstract While undergoing vibration testing, a type 347 stainless steel inlet header for a fuel-to-air heat exchanger cracked in the header tube adjacent to the weld bead between the tube and header duct. Investigation (visual inspection and liquid penetrant inspection) supported the conclusion...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047602
EISBN: 978-1-62708-235-8
... Abstract Parts of 21Cr-6Ni-9Mn stainless steel that had been forged at about 815 deg C (1500 deg F) were gas tungsten arc welded. During postweld inspection, cracks were found in the HAZs of the welds. Welding had been done using a copper fixture that contacted the steel in the area of the HAZ...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047632
EISBN: 978-1-62708-235-8
... Abstract An air bottle, machined from a solid block of aluminum alloy 2219-T852, displayed liquid-penetrant crack indications after assembly welding. The air bottle was machined to rough shape, a 3.8 mm (0.15 in.) wall thickness cylindrical cup with a 19 mm (3/4 in.) wall thickness integral...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001430
EISBN: 978-1-62708-236-5
... torsional fatigue. A second shaft carried as spare gear was fitted and failure took place in a similar manner in about the same period of time. Examination revealed that the tapered portion of the Fe-0.6C carbon steel shaft had been built up by welding prior to final machining. A detailed check...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003509
EISBN: 978-1-62708-180-1
... Abstract This article briefly reviews the general causes of weldment failures, which may arise from rejection after inspection or failure to pass mechanical testing as well as loss of function in service. It focuses on the general discontinuities observed in welds, and shows how some...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006808
EISBN: 978-1-62708-329-4
... Abstract This article describes some of the welding discontinuities and flaws characterized by nondestructive examinations. It focuses on nondestructive inspection methods used in the welding industry. The sources of weld discontinuities and defects as they relate to service failures...
Image
Published: 01 June 2019
Fig. 3 Typical example of fissure at toe of seal-weld, showing welding of rivet head and incomplete filling of hole by rivet More
Image
Published: 01 June 2019
Fig. 7 Distribution of welding in first accumulator More
Image
Published: 01 June 2019
Fig. 1 Tram-rail assembly that fractured because of poor welding practices. (a) Section of tram rail as fabricated. T-section beam (1020 steel) is at top, T-section rail (1050 steel) is at bottom. (b) Enlarged view of welded area showing crack at toe of weld (arrow). (c) Crack in rail More
Image
Published: 01 June 2019
Fig. 1 Wire-end preparation for upset butt welding. The preparation was changed from chisel end (a) to square end (b) to eliminate test failures in welded zinc-coated AISI 1080 or 1055 steel wire. More
Image
Published: 01 June 2019
Fig. 1 Transverse welding seam (internal side). 0.4 × More
Image
Published: 01 June 2019
Fig. 2 Longitudinal welding seam (external side). Start points of corrosion. 0.4 × More
Image
Published: 01 June 2019
Fig. 5 Sections through end welds showing welding sequence and extent of cracking. (×6). More
Image
Published: 01 June 2019
Fig. 6 Sections through end welds showing welding sequence and extent of cracking. (×6). More
Image
Published: 01 June 2019
Fig. 2 Longitudinal section across welding seam. Etch: Copper ammonium chloride solution according to Heyn. 1 × More