Skip Nav Destination
Close Modal
Search Results for
weld monitoring system
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 91 Search Results for
weld monitoring system
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001344
EISBN: 978-1-62708-215-0
... and routine inspection of critical monitoring systems (conductivity alarms, sodium analyzers, etc.) were recommended to help avoid future occurrences of severe boiler feedwater contamination. Additional recommendations were to eliminate these short longitudinal weld joints by using a bracket assembly joint...
Abstract
Several 304H stainless steel superheater tubes fractured in stressed areas within hours of a severe caustic upset in the boiler feedwater system. Tests performed on a longitudinal weld joint, which connected two adjacent tubes in the tertiary superheater bank, confirmed caustic-induced stress-corrosion cracking, promoted by the presence of residual welding stresses. Improved maintenance of check valves and routine inspection of critical monitoring systems (conductivity alarms, sodium analyzers, etc.) were recommended to help avoid future occurrences of severe boiler feedwater contamination. Additional recommendations were to eliminate these short longitudinal weld joints by using a bracket assembly joint between the tubes, use a post-weld heat treatment to relieve residual welding stress or select a more stress-corrosion cracking resistant alloy for this particular application.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003556
EISBN: 978-1-62708-180-1
... the degradation of various protective systems, such as corrosion inhibitors and lubricants. The article describes the failure analysis of steel, iron, copper, aluminum, and their alloys. It also discusses the probes available to monitor conditions relevant to MIC in industrial systems and the sampling...
Abstract
This article focuses on the mechanisms of microbially induced or influenced corrosion (MIC) of metallic materials as an introduction to the recognition, management, and prevention of microbiological corrosion failures in piping, tanks, heat exchangers, and cooling towers. It discusses the degradation of various protective systems, such as corrosion inhibitors and lubricants. The article describes the failure analysis of steel, iron, copper, aluminum, and their alloys. It also discusses the probes available to monitor conditions relevant to MIC in industrial systems and the sampling and analysis of conditions usually achieved by the installation of removable coupons in the target system. The article also explains the prevention and control strategies of MIC in industrial systems.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0091617
EISBN: 978-1-62708-220-4
... cracks in the flange-to-cone weld and in the base metal of the cone were characteristic of chloride stress-corrosion cracks in type 316 stainless steel. There were two possible sources of chlorides: boiler feedwater and insulation. The boiler feedwater was an unlikely source because it was monitored...
Abstract
A 680,000 kg (750 ton) per day ammonia unit was shut down following a fire near the outlet of the waste heat exchanger. The fire had resulted from leakage of ammonia from the type 316 stainless steel outlet piping. The outlet piping immediately downstream from the waste heat exchanger consisted of a flange made from a casting, and a reducing cone, a short length of pipe, and a 90 deg elbow, all made of 13 mm thick plate. A liner wrapped with insulation was welded to the smaller end of the reducing cone. All of the piping up to the flange was wrapped with insulation. Investigation (visual inspection, 10x unetched images, liquid-penetrant inspection, and chemical analysis of the insulation) supported the conclusion that the failure occurred in the area of the flange-to-cone weld by SCC as the result of aqueous chlorides leached from the insulation around the liner by condensate. Recommendations included eliminating the chlorides from the system, maintaining the temperature of the outlet stream above the dewpoint at all times, or that replacing the type 316 stainless steel with an alloy such as Incoloy 800 that is more resistant to chloride attack.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001632
EISBN: 978-1-62708-234-1
... area, a system called Monitor was developed. Monitor uses dual-force feedback manipulators and “sees” through a series of closed-circuit television cameras. It has several joints for angular movement and articulation for reaching. Controls are contained in a remote space shielded from the radioactive...
Abstract
A double-walled, hemispherical metal beam exit window made of alloy 718 developed a crack during service, leading to coolant leakage. The window had been exposed to radiation damage from 800 MeV protons and a cyclic stress from 600 MPa tensile to near zero induced by numerous temperature cycles calculated to be from 400 to 30 deg C (752 to 86 deg F). The window was activated to >200 Sv/h. It was determined through analysis using remote handling techniques and hot cells that the crack initiated near a spot weld used to affix thermocouples to the window surface. In addition to analysis of the crack, some of the irradiated material from the window was used to measure mechanical properties. Hot cell techniques for preparation of samples and testing were developed to determine true operating conditions of radiation, strain, and temperature.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001832
EISBN: 978-1-62708-241-9
... to the longitudinal seam weld Fig. 1 Side view of high-level waste tank with ventilation system on tank top Fig. 2 Purge ventilation system of Tank 39, a Type IIIA tank Fig. 3 Photograph of failed vent pipe section Abstract High-level radioactive wastes generated during...
Abstract
High-level radioactive wastes generated during the processing of nuclear materials are kept in large underground storage tanks made of low-carbon steel. The wastes consist primarily of concentrated solutions of sodium nitrate and sodium hydroxide. Each of the tanks is equipped with a purge ventilation system designed to continuously remove hydrogen gas and vapors without letting radionuclides escape. Several intergranular cracks were discovered in the vent pipe of one such system. The pipe, made of galvanized steel sheet, connects to an exhaust fan downstream of high-efficiency particulate air filters. The failure analysis investigation concluded that nitrate-induced stress-corrosion cracking was the cause of the failure.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006838
EISBN: 978-1-62708-329-4
... in this article for different AM processes. Powder-Bed Fusion Figure 5 is a schematic of a generic PBF system. In PBF, a component is built in a series of layers, each with a thickness of 10 to 50 μm. In principle, the entire volume of the part can be inspected during the build process by monitoring each...
Abstract
This article provides an overview of metal additive manufacturing (AM) processes and describes sources of failures in metal AM parts. It focuses on metal AM product failures and potential solutions related to design considerations, metallurgical characteristics, production considerations, and quality assurance. The emphasis is on the design and metallurgical aspects for the two main types of metal AM processes: powder-bed fusion (PBF) and directed-energy deposition (DED). The article also describes the processes involved in binder jet sintering, provides information on the design and fabrication sources of failure, addresses the key factors in production and quality control, and explains failure analysis of AM parts.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001594
EISBN: 978-1-62708-229-7
...-induced cracks in socket-welded joints has confirmed that visual monitoring does detect cracks in a timely manner, that these cracks do not result in catastrophic failures, and that the plant can be safely shut down in spite of a leaking socket-welded joint in a small bore pipe. Historical data from TU...
Abstract
Nuclear power plants typically experience two or three high-cycle fatigue failures of stainless steel socket-welded connections in small bore piping during each plant-year of operation. This paper discusses fatigue-induced failure in socket-welded joints and the strategy Texas Utilities Electric Company (TU Electric) has implemented in response to these failures. High-cycle fatigue is invisible to proven commercial nondestructive evaluation (NDE) methods during crack initiation and the initial phases of crack growth. Under a constant applied stress, cracks grow at accelerating rates, which means cracks extend from a detectable size to a through-wall crack in a relatively short time. When fatigue cracks grow large enough to be visible to NDE, it is likely that the component is near the end of its useful life. TU Electric has determined that an inspection program designed to detect a crack prior to the component leaking would involve frequent inspections at a given location and that the cost of the inspection program would far exceed the benefits of avoiding a leak. Instead, TU Electric locates these cracks by visually monitoring for leaks. Field experience with fatigue-induced cracks in socket-welded joints has confirmed that visual monitoring does detect cracks in a timely manner, that these cracks do not result in catastrophic failures, and that the plant can be safely shut down in spite of a leaking socket-welded joint in a small bore pipe. Historical data from TU Electric and Southwest Research Institute are presented regarding the frequency of failures, failure locations, and the potential causes. The topics addressed include 1) metallurgical and fractographic features of fatigue cracks at the weld toe and weld root; 2) factors that are associated with fatigue, such as mechanical vibration, internal pulsation, joint design, and welding workmanship; and 3) implications of a leaking crack on plant safety. TU Electric has implemented the use of modified welding techniques for the fabrication of socket-welded joints that are expected to improve their ability to tolerate fatigue.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006788
EISBN: 978-1-62708-295-2
... opportunities to improve operating processes and procedures related to the management of system integrity. Industry experience with corrosion-resistant alloys of steel, copper, and aluminum is reviewed. The article ends with a discussion on monitoring and preventing microbiologically influenced corrosion...
Abstract
This article focuses on the mechanisms of microbiologically influenced corrosion as a basis for discussion on the diagnosis, management, and prevention of biological corrosion failures in piping, tanks, heat exchangers, and cooling towers. It begins with an overview of the scope of microbial activity and the corrosion process. Then, various mechanisms that influence corrosion in microorganisms are discussed. The focus is on the incremental activities needed to assess the role played by microorganisms, if any, in the overall scenario. The article presents a case study that illustrates opportunities to improve operating processes and procedures related to the management of system integrity. Industry experience with corrosion-resistant alloys of steel, copper, and aluminum is reviewed. The article ends with a discussion on monitoring and preventing microbiologically influenced corrosion failures.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001639
EISBN: 978-1-62708-229-7
... automated ultrasonic inspection supplemented by remote visual inspection. The inspection system provided the following capabilities: Thickness mapping Weld inspection Crack detection Flaw sizing Through-wall bleed-out Visual/photography Inspection Equipment All ultrasonic...
Abstract
This paper describes the remote ultrasonic (UT) examinations of a high-level radioactive waste storage tank at the Savannah River Site in South Carolina. The inspections, carried out by E.R. Holland, R.W. Vande Kamp, and J.B. Elder, were performed from the contaminated, annular space of the 46 year old, inactive, 1.03 million gallon waste storage tank. A steerable, magnetic wheel wall crawler was inserted into the annular space through small (6 in., or 150 mm, diam) holes/risers in the tank top. The crawler carried the equipment used to simultaneously collect data with up to four UT transducers and two cameras. The purpose of this inspection was to verify corrosion models and to investigate the possibility of previously unidentified corrosion sites or mechanisms. The inspections included evaluation of previously identified leak sites, thickness mapping, and crack detection scans on specified areas of the tank. No indications of reportable wall loss or pitting were detected. All thickness readings were above minimum design tank-wall thickness, although several small indications of thinning were noted. The crack detection and sizing examinations revealed five previously undetected indications, four of which were only partially through-wall. The cracks that were examined were found to be slightly longer than expected but still well within the flaw size criteria used to evaluate tank structural integrity.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0048845
EISBN: 978-1-62708-229-7
... welds in the secondary superheater outlet headers (constructed of SA335-P11 material) of a major boiler were described as an example. The OD of the header was measured to detect the amount of swelling and found to have increased 1.6% since its installation. Ligament cracks extending from tube seat...
Abstract
The maximum life of base-loaded headers and piping is not possible to be predicted until they develop microcracking. The typical elements of a periodic inspection program after the occurrence of the crack was described extensively. Cracks caused by creep swelling in the stub-to-header welds in the secondary superheater outlet headers (constructed of SA335-P11 material) of a major boiler were described as an example. The OD of the header was measured to detect the amount of swelling and found to have increased 1.6% since its installation. Ligament cracks extending from tube seat to tube seat were revealed by surface inspection. Cracks were found to originate from inside the header, extend axially in the tube penetrations and radially from those holes into the ligaments. Cracks in 94 locations, ranging from small radial cracks to full 360Ý cracks were revealed by dye-penetrant inspection. The unit was operated under reduced-temperature conditions and with less load cycling than previously until a redesigned SA335-P22 header was installed.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001363
EISBN: 978-1-62708-215-0
... of the collective pitch control system, showing the thrust bearing set, control tube, and actuator Fig. 3 Pitch control thrust bearing races, showing signs of overheating and plastic deformation. (a) Inner races, as exposed. (b) Outer races, as exposed Fig. 4 Pitch control thrust bearing inner...
Abstract
An accidental overspeed condition during wind tunnel testing resulted in the destruction of a propeller rotor The occurrence was initially attributed to malfunction in the collective pitch control system. All fractured parts in the system were inspected. Highly suspect parts, including the pitch control thrust bearing set, head bolts, hub fork, and actuator rod end, were examined in more detail The thrust bearing set (52100 steel) was identified as the probable source of the uncommanded pitch angle change. A complete failure analysis of the bearing indicated that failure was precipitated by excessive heating, causing cage disintegration, plastic flow of the races and balls, and eventual separation of inner and outer races. It was recommended that the bearing set be resized to accommodate the large thrust as and that a thermocouple be added to monitor the condition of the bearing during testing.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006936
EISBN: 978-1-62708-395-9
... Monitoring System for Composite Pressure Vessels , IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control , Vol 67 (No. 6 ), 2016 , p 864 – 873 10.1109/TUFFC.2016.2545716 12. Pullano S.A. , Critello C.D. , Bianco M.G. , Menniti M. , and Fiorillo A.S...
Abstract
Of the many different nondestructive evaluation (NDE) techniques, ultrasonic inspection continues to be the leading nondestructive method for inspecting composite materials, because measurements can be quantitative and the typical defect geometries and orientations lend themselves to detection and characterization. This article focuses on the three common methods for ultrasonic nondestructive inspection of plastics, namely pitch-catch, through-transmission, and pulse-echo, as well as the three basic types of ultrasonic NDE scans: the A-scan, B-scan, and C-scan. The discussion includes the linear and phased array systems that are sometimes used for large-scale inspection tasks to reduce scan times, the various gating and image processing techniques, and how ultrasonic data are interpreted and presented. A brief section on future trends in ultrasonic inspection is presented at the end of the article.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001559
EISBN: 978-1-62708-229-7
... Stone & Webster Engineering Corporation (SWEC) was able to recommend continued use of such a system, without total replacement of materials (including piping, socket welds and valves) (Ref. 5 ). Failure Analysis This study began with the failure analysis of 1 in. diameter Type 304 stainless...
Abstract
One inch diam Type 304 stainless steel piping was designed to carry containment atmosphere samples to an analyzer to monitor hydrogen and oxygen levels during operational and the design basis accident conditions that are postulated to occur in a boiling water reactor. Only one of six lines in the system had thru-wall cracks. Shallow incipient cracks were detected at the lowest elevations of one other line. The balance of the system had no signs of SCC attack. Chlorides and corrosion deposits in varying amounts were found throughout the system. The failure mechanism was transgranular, chloride, stress-corrosion cracking. Replacement decisions were based on the presence of SCC attack or heavy corrosion deposits indicative of extended exposure time to chloride-contaminated water. The existing uncracked pipe, about 75 percent of the piping in the system, was retained despite the presence of low level surface chlorides. Controls were implemented to insure that temperatures are kept below 150 deg F, or, walls of the pipe are moisture-free or the cumulative wetted period will never exceed 30 h.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001308
EISBN: 978-1-62708-215-0
... Fig. 1 Wind tunnel model orientation adjustment system, showing model support, test section floor, supporting carriages, and turntable rail Fig. 2 Turntable rail, showing type and location of cracking Fig. 4 SEM micrograph of region Ia. Rock candy appearance indicates...
Abstract
Persistent cracking in a forged 1080 steel turntable rail in a wind tunnel test section was investigated. All cracks were oriented transverse to the axis of the rail, and some had propagated through the flange into the web. Through-flange cracks had been repair welded. A section of the flange containing one through-flange crack was examined using various methods. Results indicated that the cracks had initiated from intergranular quench cracks caused by the use of water as the quenching medium. Brittle propagation of the cracks was promoted by high residual stresses acting in conjunction with applied loads. Repair welding was discontinued to prevent the introduction of additional residual stress., Finite-element analysis was used to show that the rail could tolerate existing cracks. Periodic inspection to monitor the degree of cracking was recommended.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001609
EISBN: 978-1-62708-229-7
... Autogenously seam-welded tubes were manufactured to SA-268, Grade 430, Unified Numbering System (UNS) S43000, with a mill heat treatment of 650 °C (1200 °F) minimum and a maximum hardness of 90 HRB. 7 Tube-to-header welds were made with type 430 weld filler metal. A PWHT temperature of 730 °C (1350 °F...
Abstract
Alloy 430 stainless steel tube-to-header welds failed in a heat recovery steam generator (HRSG) within one year of commissioning. The HRSG was in a combined cycle, gas-fired, combustion turbine electric power plant. Alloy 430, a 17% Cr ferritic stainless steel, was selected because of its resistance to chloride and sulfuric acid dewpoint corrosion under conditions potentially present in the HRSG low-pressure feedwater economizer. Intergranular corrosion and cracking were found in the weld metal and heat-affected zones. The hardness in these regions was up to 35 HRC, and the weld had received a postweld heat treatment (PWHT). Metallographic examination revealed that the corroded areas contained undertempered martensite. Fully tempered weld areas with a hardness of 93 HRB were not attacked. No evidence of corrosion fatigue was found. Uneven temperature control during PWHT was the most likely cause of failure.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006756
EISBN: 978-1-62708-295-2
... of longitudinal seam welds using replication to look for void formation and cracks at grain boundaries, an early indication of impending creep failure. Cyclic loading is now continuously monitored in many systems during component life cycles. General observation including nondestructive evaluation techniques...
Abstract
The principal task of a failure analyst during a physical-cause investigation is to identify the sequence of events involved in the failure. Technical skills and tools are required for such identification, but the analyst also needs a mental organizational framework that helps evaluate the significance of observations. This article discusses the processes involved in the characterization and identification of damage and damage mechanisms. It describes the relationships between damage causes, mechanisms, and modes with examples. In addition, some of the more prevalent and encompassing characterization approaches and categorization methods of damage mechanism are also covered.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001536
EISBN: 978-1-62708-229-7
.... 4.2 Failure of Canopy Seal Welds in Adapter Tube Assemblies in a PWR Control Rod Drive Head The problem of IGSCC in recirculation coolant system piping is peculiar to BWRs, because the dissolved oxygen content of the coolant in pressurized water reactors (PWRs) is normally much too low to support...
Abstract
Argonne National Laboratory has conducted analyses of failed components from nuclear power-generating stations since 1974. The considerations involved in working with and analyzing radioactive components are reviewed here, and the decontamination of these components is discussed. Analyses of four failed components from nuclear plants are then described to illustrate the kinds of failures seen in service. The failures discussed are (1) intergranular stress-corrosion cracking of core spray injection piping in a boiling water reactor, (2) failure of canopy seal welds in adapter tube assemblies in the control rod drive head of a pressurized water reactor, (3) thermal fatigue of a recirculation pump shaft in a boiling water reactor, and (4) failure of pump seal wear rings by nickel leaching in a boiling water reactor.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001064
EISBN: 978-1-62708-214-3
... bacteria ( Gallionella ) Very abundant … (a) Per “Prevention and Control of Water-Caused Problems in Building Potable Water Systems,” TPC Publ. 7, National Association of Corrosion Engineers Fig. 4 Iron bacteria of genus Gallionella . Fig. 3 Flask-shaped pit. Fig. 1...
Abstract
Several hundred leaks were reported in the type 304 stainless steel pipelines, vessels, and tanks of a chemical plant at a tropical location within a few weeks after startup. Investigation of the failure involved a site visit, metallographic examination and analysis of the material, analysis of hydrotest waters, and microbiological examination of slime that had formed in certain pipework sections. It was determined that the failure resulted from microbially induced corrosion promoted by the use of poor-quality hydrotest water and uncontrolled hydrotesting practice. Use of appropriate hydrotesting procedures was recommended to prevent similar failures.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006916
EISBN: 978-1-62708-395-9
... — a key requirement Monitor coolant flow and temperature Issues/Advantages Cosmetic issues, dimensional variations, weak knit lines, voids, sinks, etc. Establishing cosmetic and dimensional process window — a robust process Butt weld tensile strength retention values Table 2 Butt weld...
Abstract
This article focuses on manufacturing-related failures of injection-molded plastic parts, although the concepts apply to all plastic manufacturing processes It provides detailed examples of failures due to improper material handling, drying, mixing of additives, and molecular packing and orientation. It also presents examples of failures stemming from material degradation improper use of metal inserts, weak weld lines, insufficient curing of thermosets, and inadequate mixing and impregnation in the case of thermoset composites.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001082
EISBN: 978-1-62708-214-3
... water system, designed for two pumps, was operated with only one pump. Maintenance and inspection are frequently performed over the lifetime of the impellers. The owner operator of the impeller pump system made significant efforts to monitor vibration and to periodically inspect for defects. However...
Abstract
Several large-diameter type 304L stainless steel impeller/propeller blades in a circulating water pump failed after approximately 8 months of operation. The impeller was a single casting that had been modified with a fillet weld buildup at the blade root. Visual examination indicated that the fracture originated near the blade-to-hub attachment in the area of the weld buildup. Specimens from four failed castings and from an impeller that had developed cracks prior to design modification were subjected to a complete analysis. A number of finite-element-method computer models were also constructed. It was determined that the blades failed by fatigue that had been accelerated by stress-corrosion cracking. The mechanism of failure was flow-induced vibration, in which the vortex-shedding frequencies of the blades were attuned to the natural frequency of the blade/hub configuration. A number of solutions involving material selection and impeller redesign were recommended.
1