Skip Nav Destination
Close Modal
Search Results for
wear design
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 236 Search Results for
wear design
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003558
EISBN: 978-1-62708-180-1
... to reduce the clearance. This method is an example of a simple phenomenological model. A more elaborate model would be describing the wear situation as unlubricated mild sliding, impact, or rolling wear, and using analytical models for these wear situations to develop relationships between wear and design...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001783
EISBN: 978-1-62708-241-9
... other issues emerged that were not previously considered. As a result, the investigation provides information on not only better materials, but also design changes intended to reduce wear and increase service life. References References 1. Guide to Adhesive Wear . Peoton Industries Ltd 2...
Abstract
An aluminum bronze bushing that serves as a guide in a crimping machine began to fail after 50,000 cycles or approximately two weeks of operation. Until then, typical run times had been on the order of months. Although the bushings are replaceable and relatively inexpensive, the cost of downtime adds up quickly while operators troubleshoot and swap out worn components. Initially, the quality of the bushings came into question, but after a detailed analysis of the entire crimping mechanism, several other issues emerged that were not previously considered. As a result, the investigation provides information on not only better materials, but also design changes intended to reduce wear and increase service life.
Image
in Failure Analysis of Railroad Components
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 9 Schematic showing increased contact area in the updated seal wear ring design. Note the contact area of the seal wear ring in (a) the conventional design compared to (b) the updated design
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0048169
EISBN: 978-1-62708-233-4
... member by the radial wear marks on the convex surface. Beach marks indicating that fatigue fracture had been initiated at the convex surface of the washer and had propagated across to the concave surface were revealed by examination of the fractured surfaces of the washer. The cracks were revealed...
Abstract
A valve-seat retainer spring (made of 0.23 mm thick 17-7 PH stainless steel) from a fuel control on an aircraft engine was found to be broken after 3980 h of service. The two inner tabs were found to be broken off. The part was revealed to be in relative rotation against its contacting member by the radial wear marks on the convex surface. Beach marks indicating that fatigue fracture had been initiated at the convex surface of the washer and had propagated across to the concave surface were revealed by examination of the fractured surfaces of the washer. The cracks were revealed to have originated in the 0.38-mm radius fillet between the tab and the body of the washer. It was interpreted from the analysis of the compound fracture that it was composed of fatigue fractures caused by the formed tab being loaded so as to compress the spring along the axis of its centerline and produce torsional vibrations. It was concluded that the two inner tabs had broken in fatigue as the result of cyclic loading that compressed and torsionally vibrated the spring. The fillets were replaced with slots to minimize stress concentration at the corners as a corrective measure.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0046422
EISBN: 978-1-62708-234-1
... Abstract Stator vanes (cast from a Cu-Mn-Al alloy) in a hydraulic dynamometer used in a steam-turbine test facility were severely eroded. The dynamometer was designed to absorb up to 51 MW (69,000 hp) at 3670 rpm, and constituted an extrapolation of previous design practices and experience. Its...
Abstract
Stator vanes (cast from a Cu-Mn-Al alloy) in a hydraulic dynamometer used in a steam-turbine test facility were severely eroded. The dynamometer was designed to absorb up to 51 MW (69,000 hp) at 3670 rpm, and constituted an extrapolation of previous design practices and experience. Its stator was subject to severe erosion after relatively short operating times and initially required replacement after each test program. Although up to 60 cu cm (3.7 cu in.) of material was being lost from each vane, it only reduced the power-absorption capacity by a small amount. Analysis supported the conclusion that the damage was due to liquid erosion, but it could not be firmly established whether it was caused by cavitation or by liquid impact. Recommendations included making a material substitution (to Mo-13Cr-4Ni stainless steel) and doing a redesign to reduce susceptibility to erosion as well as erosion-producing conditions.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003560
EISBN: 978-1-62708-180-1
..., wear accounts for approximately 55%, while corrosion accounts for the other 15%. Thus, wear can be a serious problem in design engineering and materials selection. Moreover, of the 55% due to wear, the loss of usefulness from abrasion is 20%. Consequently, abrasive modes of wear are a significant...
Abstract
Wear, a form of surface deterioration, is a factor in a majority of component failures. This article is primarily concerned with abrasive wear mechanisms such as plastic deformation, cutting, and fragmentation which, at their core, stem from a difference in hardness between contacting surfaces. Adhesive wear, the type of wear that occurs between two mutually soluble materials, is also discussed, as is erosive wear, liquid impingement, and cavitation wear. The article also presents a procedure for failure analysis and provides a number of detailed examples, including jaw-type rock crusher wear, electronic circuit board drill wear, grinding plate wear failure analysis, impact wear of disk cutters, and identification of abrasive wear modes in martensitic steels.
Book Chapter
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006790
EISBN: 978-1-62708-295-2
..., wear accounts for approximately 55%, while corrosion accounts for the other 15%. Thus, wear can be a serious problem in design engineering and materials selection. Moreover, of the 55% due to wear, the loss of usefulness from abrasion is 20%. Consequently, abrasive modes of wear are a significant...
Abstract
Engineered components fail predominantly in four major ways: fracture, corrosion, wear, and undesirable deformation (i.e., distortion). Typical fracture mechanisms feature rapid crack growth by ductile or brittle cracking; more progressive (subcritical) forms involve crack growth by fatigue, creep, or environmentally-assisted cracking. Corrosion and wear are another form of progressive material alteration or removal that can lead to failure or obsolescence. This article primarily covers the topic of abrasive wear failures, covering the general classification of wear. It also discusses methods that may apply to any form of wear mechanism, because it is important to identify all mechanisms or combinations of wear mechanisms during failure analysis. The article concludes by presenting several examples of abrasive wear.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0009190
EISBN: 978-1-62708-225-9
... that the failure resulted from several interrelated factors: the lubricant viscosity was too low causing high temperatures; no antiscuff additives were used; a gearbox designed as a speed reducer was used as a speed increaser (the designer selected a long-addendum tooth for the pinion); the gear teeth were...
Abstract
In an industrial application, 24 speed-increaser gearboxes were used to transmit 258 kW (346 hp) and increase speed from 55 to 375 rev/min. The gears were parallel shaft, single helical, carburized, and ground. The splash lubrication system used a mineral oil without antiscuff additives with ISO 100 viscosity. After about 250 h of operation, two gearboxes failed by bending fatigue. Investigation showed the primary failure mode was scuffing, and the earlier bending fatigue failures were caused by dynamic loads generated by the worn gear teeth. Testing of a prototype gearbox showed that the failure resulted from several interrelated factors: the lubricant viscosity was too low causing high temperatures; no antiscuff additives were used; a gearbox designed as a speed reducer was used as a speed increaser (the designer selected a long-addendum tooth for the pinion); the gear teeth were not provided with a coating or plating to ease running-in; and the gears were not run-in properly under reduced loads. The case suggests that such gear failures can be avoided if designers and operators recognize that the lubricant is an important component of a gearbox and appreciate that gear design requires the consideration and control of many interrelated factors.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001087
EISBN: 978-1-62708-214-3
... and open rotor (impeller). Both the case and the ductile iron rotor core were covered by natural rubber. Analyses conducted included surface examination of wear patterns, chemical analysis of materials, measurement of mechanical properties, and in-place flow tests. It was determined that the proximate...
Abstract
The repeated failure of rubber-covered rotors and volute liners in a flue gas desulfurization system after conversion from lime slurry reagent to limestone slurry reagent was investigated. The pump was a horizontal 50 x 65 mm (2 x 2.5 in.) Galiger pump with a split cast iron case and open rotor (impeller). Both the case and the ductile iron rotor core were covered by natural rubber. Analyses conducted included surface examination of wear patterns, chemical analysis of materials, measurement of mechanical properties, and in-place flow tests. It was determined that the proximate cause of failure was cavitation and vortexing between the rotor and the lining. The root cause of the failure was the conversion from lime to limestone slurry without appropriate modification of the pump. Conversion to the limestone slurry resulted in fluid dynamics outside the operational limits of the pump. The recommended remedial action was replacement with a pump appropriately sized for the desired pressures and flow rates for limestone slurry.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001803
EISBN: 978-1-62708-241-9
... origin ( Fig. 10 ). The conjoint degradation processes of corrosion and wear of metal surfaces is clearly of great importance in the design of orthopedic prostheses. In a situation in which corrosion and wear are both possible degradation mechanisms, each could have a profound effect on the other...
Abstract
Metallurgical SEM analysis provides many insights into the failure of biomedical materials and devices. The results of several such investigations are reported here, including findings and conclusions from the examination a total hip prosthesis, stainless steel and titanium compression plates, and hollow spinal rods. Some of the failure mechanisms that were identified include corrosive attack, corrosion plus erosion-corrosion, inclusions and stress gaps, production impurities, design flaws, and manufacturing defects. Failure prevention and mitigation strategies are also discussed.
Image
in Failure of a Retainer Spring Because of Cyclic Loading and Torsional Vibration
> ASM Failure Analysis Case Histories: Design Flaws
Published: 01 June 2019
Fig. 1 Original and improved designs of a 17-7 PH stainless steel valve-seat retainer spring. As originally designed, the inner tabs on the spring broke off as a result of fatigue, and the outer tab exhibited wear.
More
Image
Published: 30 August 2021
Fig. 36 Original and improved designs of a 17-7 PH stainless steel valve-seat retainer spring. As originally designed, the inner tabs on the spring broke off as a result of fatigue, and the outer tab exhibited wear
More
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0048064
EISBN: 978-1-62708-224-2
.... Corrective Measures The coil hooks were remade to a laminated design ( Fig. 1c ); these hooks were flame cut from ASTM A242 fine-grain steel plate, then ground to remove the material damaged by flame cutting. The hooks were stress relieved at 620 °C (1150 °F) after welding but before riveting the wear...
Abstract
A 10,890-kg coil hook torch cut from 1040 steel plate failed while lifting a load of 13,600 kg after eight years of service. The normal ironing (wear) marks were exhibited by the inner surface of the hook. It was revealed by visual examination that cracking had originated at the inside radius of the hook. Beach marks (typical of fatigue fracture) were found extending over approximately 20% of the fracture surface. Numerous cracks were revealed by macroscopic examination of the torch-cut surfaces. It was revealed by macrograph of an etched specimen that the cracks had initiated in a hardened martensitic zone at the torch-cut surface and had extended up to the coarse pearlite structure beneath the martensitic zone. The fatigue fracture was concluded to have initiated in the brittle martensitic surface while failure was contributed by the 25% overload. As a corrective measure, the coil hooks were flame cut from ASTM A242 fine-grain steel plate, ground to remove the material damaged by flame cutting and stress relieved at 620 deg C.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c9001138
EISBN: 978-1-62708-231-0
... effects, failure of the thread structure of the clevis occurred. The failure occurred where the cylinder rod screws into the clevis. The rod was manufactured from 1045 steel. Cylinder rods Fretting fatigue Galling Railroad wheels 1045 UNS G10450 Fatigue fracture Fretting wear A. Design...
Abstract
A hi-rail device is a vehicle designed to travel both on roads and on rails. In this case, a truck was modified to accept the wheels for rail locomotion. The rear wheel/axle set was attached to the truck frame. Both the front and rear wheel/axle sets were raised by means of a hydraulic cylinder driven off the PTO of the truck. The wheel/axle set was rigidly fixed into an up or down position by the use of locking pins. It was assumed by the manufacturer that there would be no load on the cylinder once the wheel/axle set was in its locked position. However, as the cylinder pivoted about its mounting trunnion and extended during its motion, it interfered with a frame member. This caused both a bending load and a rotational movement. These effects caused a combination of fretting, galling, and fatigue to the internal thread structure of the clevis. As a result of these deleterious effects, failure of the thread structure of the clevis occurred. The failure occurred where the cylinder rod screws into the clevis. The rod was manufactured from 1045 steel.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006806
EISBN: 978-1-62708-329-4
... analysis of sliding bearings are also covered. Finally, the article discusses wear-damage mechanisms from the standpoint of bearing design. bearing design elastohydrodynamic lubrication failure analysis lubricants sliding bearings wear MECHANICAL EQUIPMENT usually contains moving parts...
Abstract
A mechanical part, which supports the moving part, is termed a mechanical bearing and can be classified into rolling (ball or roller) bearings and sliding bearings. This article discusses the failures of sliding bearings. It first describes the geometry of sliding bearings, next provides an overview of bearing materials, and then presents the various lubrication mechanisms: hydrostatic, hydrodynamic, boundary lubrication, elastohydrodynamic, and squeeze-film lubrication. The article describes the effect of debris and contaminant particles in bearings. The steps involved in failure analysis of sliding bearings are also covered. Finally, the article discusses wear-damage mechanisms from the standpoint of bearing design.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0009222
EISBN: 978-1-62708-180-1
... to Machining Look at Heat Treatment First Design Influences Tool Life If tools wear out in normal service, we assume that the design is adequate. However, if service conditions change or if a tool is manufactured by a new procedure, an acceptable design can become unsatisfactory. Whenever we take...
Abstract
This article describes the six fundamental factors that decide a tool's performance. These are mechanical design, grade of tool steel, machining procedure, heat treatment, grinding, and handling. A deficiency in any one of the factors can lead to a tool and die failure. The article presents a seven-step procedure to be followed when looking for the reason for a failure. A review of the results of the seven-point investigation may lead directly to the source of failure or narrow the field of investigation to permit the use of special tests.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003524
EISBN: 978-1-62708-180-1
.... The most common causes of failure characteristics are described for fracture, corrosion, and wear failures. The article provides information on the synthesis and interpretation of results from the investigation. Finally, it presents key guidelines for conducting a failure analysis. References...
Abstract
This article describes the preliminary stages and general procedures, techniques, and precautions employed in the investigation and analysis of metallurgical failures that occur in service. The most common causes of failure characteristics are described for fracture, corrosion, and wear failures. The article provides information on the synthesis and interpretation of results from the investigation. Finally, it presents key guidelines for conducting a failure analysis.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006820
EISBN: 978-1-62708-329-4
... lubrication, the measurement of the backlash, and the necessary factors for starting the failure analysis. Next, the article explains various gear failure causes, including wear, scuffing, Hertzian fatigue, cracking, fracture, and bending fatigue, and finally presents examples of gear and reducer failure...
Abstract
This article first reviews variations within the most common types of gears, namely spur, helical, worm, and straight and spiral bevel. It then provides information on gear tooth contact and gear metallurgy. This is followed by sections describing the important points of gear lubrication, the measurement of the backlash, and the necessary factors for starting the failure analysis. Next, the article explains various gear failure causes, including wear, scuffing, Hertzian fatigue, cracking, fracture, and bending fatigue, and finally presents examples of gear and reducer failure analysis.
Image
Published: 01 January 2002
Fig. 7 Examples of how design and assembly can affect localized corrosion by creating crevices and traps where corrosive liquids can accumulate. (a) Storage containers or vessels should allow complete drainage; otherwise, corrosives can concentrate in the bottom of vessel, and debris may
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001530
EISBN: 978-1-62708-225-9
... one failed catastrophically within a few days, generating a huge amount of metallic wear debris and causing pitting on the surface of the cast iron roller. Following the failure, samples were collected from both good and failed bearings. The samples were analyzed chemically and their microstructures...
Abstract
This paper describes an investigation on the failure of a large leaded bronze bearing that supports a nine-ton roller of a plastic calendering machine. At the end of the normal service life of a good bearing, which lasted for seven years, a new bearing was installed. However the new one failed catastrophically within a few days, generating a huge amount of metallic wear debris and causing pitting on the surface of the cast iron roller. Following the failure, samples were collected from both good and failed bearings. The samples were analyzed chemically and their microstructures examined. Both samples were subjected to accelerated wear tests in a laboratory type pin-on-disk apparatus. During the tests, the bearing materials acted as pins, which were pressed against a rotating cast iron disk. The wear behaviors of both bearing materials were studied using weight loss measurement. The worn surfaces of samples and the wear debris were examined by light optical microscope, SEM, and energy-dispersive x-ray microanalyzer. It was found that the laboratory pin-on-disk wear data correlated well with the plant experience. It is suggested that the higher lead content ~18%) of the good bearing compared with 7% lead of the failed bearing helped to establish a protective transfer layer on the worn surface. This transfer layer reduced metal-to-metal contact between the bearing and the roller and resulted in a lower wear rate. The lower lead content of the failed bearing does not allow the establishment of a well-protected transfer layer and leads to rapid wear.
1