1-20 of 227 Search Results for

wall thinning

Sort by
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001276
EISBN: 978-1-62708-215-0
... Abstract The carbon steel feedwater piping at a waste-to-energy plant was suffering from wall thinning and leaking after being in service for approximately six years. Metallographic examination of ring sections removed front the piping revealed a normal microstructure consisting of pearlite...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001598
EISBN: 978-1-62708-232-7
... Abstract The metallurgical condition of a cylindrical induction melter (CIM) vessel was evaluated after approximately 375 h of operation over a two-year span at temperatures between 1400 to 1500 deg C. Wall thinning and significant grain growth was observed in the lower portion of the conical...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001826
EISBN: 978-1-62708-241-9
... testing, energy dispersive x-ray analysis, and inductively coupled plasma mass spectrometry. The tube was made from SA 210A1 carbon steel that had been compromised by wall thinning and the accumulation of fire and water-side scale deposits. Investigators determined that the tube failed due to prolonged...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001325
EISBN: 978-1-62708-215-0
... failure at this location because the weld was abnormally thin as fabricated. Thus, failure resulted from inadequate deposition of weld metal and subsequent wall thinning from internal corrosion. It was recommended that the cross-tee be replaced with a like component, with more careful attention to weld...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001333
EISBN: 978-1-62708-215-0
... Abstract A low-carbon steel (St35.8) tube in a phthalic anhydride reactor system failed. Visual and stereomicroscopic examination of fracture surfaces revealed heavy oxide/deposits on the outer surface of the tube, tube wall thinning in the area of the fracture, and discolorations and oxides...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001676
EISBN: 978-1-62708-229-7
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0048331
EISBN: 978-1-62708-229-7
... of the rupture. A red and white deposit was found on the sides and bottom of the tube in the rupture area. The deposit was produced by attack of the steel by the alkali acid sulfate and had thinned the tube wall. It was concluded that rupture of the tube had occurred due to thinning of the wall by coal-ash...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001601
EISBN: 978-1-62708-235-8
... Abstract Flow forming technology has emerged as a promising, economical metal forming technology due to its ability to provide high strength, high precision, thin walled tubes with excellent surface finish. This paper presents experimental observations of defects developed during flow forming...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0091208
EISBN: 978-1-62708-220-4
... Examination The underside of the floor plates showed extensive localized wall thinning. Figure 1 shows a pit in one of the tank floor plates. While it was expected that the ground under the tank was near operational temperatures, it was determined that the temperatures were below 104 °C (220 °F...
Image
Published: 01 June 2019
Fig. 6 Structure of second crankcase. 100 × a. Unetched. In the thin-walled part with crack. Structure of second crankcase. 100 × b. Picral. In the thin-walled part with crack. More
Image
Published: 01 June 2019
Fig. 11 In the thin-walled part at the crack region a in Fig. 7 . 100 × More
Image
Published: 01 June 2019
Fig. 12 In the thin-walled part at the crack region b in Fig. 7 . 500 × More
Image
Published: 01 June 2019
Fig. 6 Case of old design. Thin-walled part. Microstructure of crankcase, etch: Picral. 100 × More
Image
Published: 01 June 2019
Fig. 7 Thin-walled part of reinforced case. Microstructure of crankcase, etch: Picral. 100 × More
Image
Published: 01 June 2019
Fig. 3 Core structure: Etch: Picral. 500 × Thin-walled section. More
Image
Published: 01 January 2002
Fig. 8 Thin-lip rupture in a 64-mm (2 1 2 -in.) outside-diameter × 2.7-mm (0.105-in.) wall thickness carbon steel furnace-wall tube that was caused by rapid overheating. Knife-edge wall thinning at longitudinal main rupture is shown in cross section in the inset. Note secondary More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001639
EISBN: 978-1-62708-229-7
... on specified areas of the tank. No indications of reportable wall loss or pitting were detected. All thickness readings were above minimum design tank-wall thickness, although several small indications of thinning were noted. The crack detection and sizing examinations revealed five previously undetected...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c0046915
EISBN: 978-1-62708-232-7
..., and etched micrographs using Murakami's reagent) supported the conclusions that thinning of the pan walls at the surface of the molten lead resulted from using coke of high moisture content and from the low fluctuating coke level. Recommendations included reducing the supply of oxygen attacking the grain...
Image
Published: 01 June 2019
Fig. 1 Stainless steel pan (top) for a molten-lead bath that failed as a result of wall thinning (shaded area) caused by oxidation and decarburization. Overall view of pan and section taken through a second pan (Section A-A) showing the relation of the thinned region to coke level. Dimensions More
Image
Published: 01 June 2019
Fig. 7 Composite photomicrograph showing microstructure of the conical section from the CIM. Note significant grain growth and the lack of voids throughout the cross section. Molten glass attack is visible on ID surface, but no wall thinning occurred. More