Skip Nav Destination
Close Modal
By
Richard P. Baron
By
Richard H. McSwain
By
W.B.F. Mackay
By
Wendy L. Weiss
Search Results for
visual examination
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 793
Search Results for visual examination
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Visual Examination and Photography in Failure Analysis
Available to PurchaseSeries: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006851
EISBN: 978-1-62708-395-9
... that are applied to failure analysis, both in the field and in the laboratory. It discusses the processes involved in visual examination, field photographic documentation, and laboratory photographic documentation of failed components. The article describes the operating principles of each part of a professional...
Abstract
Failure analysis is an investigative process in which the visual observations of features present on a failed component and the surrounding environment are essential in determining the root cause of a failure. This article reviews the basic photographic principles and techniques that are applied to failure analysis, both in the field and in the laboratory. It discusses the processes involved in visual examination, field photographic documentation, and laboratory photographic documentation of failed components. The article describes the operating principles of each part of a professional digital camera. It covers basic photographic principles and manipulation of settings that assist in producing high-quality images. The need for accurate photographic documentation in failure analysis is also presented.
Book Chapter
Visual Examination and Photography in Failure Analysis
Available to PurchaseSeries: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006763
EISBN: 978-1-62708-295-2
... lighting and microscopic photography. Special techniques can be employed to deal with highly reflective conditions and are also described in this article. digital cameras failure analysis microscopic photography photographic lighting visual examination FAILURE ANALYSIS is an investigative...
Abstract
Failure analysis is an investigative process that uses visual observations of features present on a failed component fracture surface combined with component and environmental conditions to determine the root cause of a failure. The primary means of recording the conditions and features observed during a failure analysis investigation is photography. Failure analysis photographic imaging is a combination of both science and art; experience and proper imaging techniques are required to produce an accurate and meaningful fracture surface photograph. This article reviews photographic principles and techniques as applied to failure analysis, both in the field and in the laboratory. The discussion covers the processes involved in field and laboratory photographic documentations, provides a description of professional digital cameras, and gives information on photographic lighting and microscopic photography. Special techniques can be employed to deal with highly reflective conditions and are also described in this article.
Image
Visual examination of tubes: ( a ) unused, ( b ) unfailed, ( c ) tube conta...
Available to PurchasePublished: 01 December 2019
Fig. 1 Visual examination of tubes: ( a ) unused, ( b ) unfailed, ( c ) tube contain crack, and ( d ) ruptured tube
More
Image
Collecting the visual examination evidence and summarizing it in a rational...
Available to Purchase
in Failures of Rolling-Element Bearings and Their Prevention
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Image
Visual examination of welded water pipe indicated a lack of root penetratio...
Available to Purchase
in Failure of a Spiral-Welded Water Pipe
> ASM Failure Analysis Case Histories: Buildings, Bridges, and Infrastructure
Published: 01 June 2019
Fig. 1 Visual examination of welded water pipe indicated a lack of root penetration. This probable cause was later confirmed by metallurgical investigation.
More
Image
Published: 01 June 2019
Book Chapter
Failure of Aircraft Wing Leading Edge Panel
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0006421
EISBN: 978-1-62708-217-4
...-in.) crack was received for examination. Visual examination of the submitted panel revealed two cracks. One crack ran through six adjacent fastener holes. Sections of the beveled edges of the holes were missing and corrosion was evident. Visual examination of the fastener holes after separation of the crack...
Abstract
Cracks were found on the wing leading edge of a test aircraft made from AZ31B magnesium alloy. Crack lengths were approximately 230 mm (9 in.) long on the left side and approximately 130 mm (5 in.) long on the right side. The cracks ran parallel to the leading edge. The 230-mm (9-in.) crack was received for examination. Visual examination of the submitted panel revealed two cracks. One crack ran through six adjacent fastener holes. Sections of the beveled edges of the holes were missing and corrosion was evident. Visual examination of the fastener holes after separation of the crack showed that the fracture faces were corroded. Optical examination of either side of the middle group of fastener holes showed that the area of suspected crack initiation had suffered excessive corrosion. Examination of the holes on the end of the crack showed fracture characteristics typical of fatigue and/or corrosion fatigue. It was concluded that crack propagation of the fracture in the wing panel occurred by a combination of corrosion and high-cycle fatigue in the end fastener holes. It was recommended that future panels be manufactured of 2024 aluminum.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001027
EISBN: 978-1-62708-214-3
... Abstract The 4340 steel main rotor yoke of a helicopter failed during a hovering exercise. Visual examination of the yoke revealed no evidence of gross external damage. Visual fracture surface examination, macrofractography, scanning electron micrography, and metallography of a section cut from...
Abstract
The 4340 steel main rotor yoke of a helicopter failed during a hovering exercise. Visual examination of the yoke revealed no evidence of gross external damage. Visual fracture surface examination, macrofractography, scanning electron micrography, and metallography of a section cut from the yoke in the region of the cracking indicated that the failure was caused by fatigue-crack initiation and growth from severe corrosion damage to a pillow-block bolt hole. Corrosion occurred because of failure of the protection scheme. An upgraded corrosion protection scheme for the bolt holes was recommended, along with nondestructive inspection of the region at intervals determined by fractographic analysis of the fatigue crack growth.
Book Chapter
Corrosion Fatigue of Aircraft Nose Wheels
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0006428
EISBN: 978-1-62708-217-4
... Abstract Four nose wheels fabricated from 2014-T6 aluminum alloy and cold worked at the flange were examined. Visual examination showed that the failure started in the tube well area on the wheel with serial number 31. The failure initiated in the flange fillet on wheels with serial numbers 67...
Abstract
Four nose wheels fabricated from 2014-T6 aluminum alloy and cold worked at the flange were examined. Visual examination showed that the failure started in the tube well area on the wheel with serial number 31. The failure initiated in the flange fillet on wheels with serial numbers 67, 217, and 250. Scanning electron microscopy (SEM) examination of the fractures showed that failure initiated by SCC or a corrosion pit on all failures examined. The failures then progressed by fatigue. Dye penetrant testing revealed no additional flaws on the wheels that had failed in the flange area. There was, however, one flaw area in the flange of the wheel that failed in the tube well. This flaw resembled a corrosion pit. It was concluded that failure of nose wheels 67, 217, and 250 was caused by cracking due to SCC or pitting. The failures progressed by fatigue. Because failure occurred in the same general area on all three wheels, these locations are suspect as being underdesigned. It was recommended that the nose wheel be redesigned and additional service data be accumulated to understand the contributing factors that resulted in wheel failure.
Book Chapter
Stress-Corrosion Cracking of an Inconel 600 Safe-End on a Reactor Nozzle
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0091655
EISBN: 978-1-62708-229-7
.... An Inconel 600 thermal sleeve was welded to the safe-end, and a repair weld had obviously been made on the outside surface of the safe-end to correct a machining error. Initial visual examination of the safe-end disclosed that the cracking extended over approximately 85 deg of the circular circumference...
Abstract
Cracking occurred in an ASME SB166 Inconel 600 safe-end forging on a nuclear reactor coolant water recirculation nozzle while it was in service. The safe-end was welded to a stainless-steel-clad carbon steel nozzle and a type 316 stainless steel transition metal pipe segment. An Inconel 600 thermal sleeve was welded to the safe-end, and a repair weld had obviously been made on the outside surface of the safe-end to correct a machining error. Initial visual examination of the safe-end disclosed that the cracking extended over approximately 85 deg of the circular circumference of the piece. Investigation (visual inspection, on-site radiographic inspection, limited ultrasonic inspection, chemical analysis, 53x metallographic cross sections and SEM images etched in 8:1 phosphoric acid) supported the conclusion that the cracking mechanism was intergranular SCC. No recommendations were made.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001817
EISBN: 978-1-62708-180-1
..., visual examination, microscopic examination, chemical analysis, and mechanical tests. The article explains corrosion fatigue of tubing of heat exchangers caused by aggressive environment and cyclic stress. It also discusses the effects of design, welding practices, and elevated temperatures...
Abstract
This article describes the characteristics of tubing of heat exchangers with respect to general corrosion, stress-corrosion cracking, selective leaching, and oxygen-cell attack, with examples. It illustrates the examination of failed parts of heat exchangers by using sample selection, visual examination, microscopic examination, chemical analysis, and mechanical tests. The article explains corrosion fatigue of tubing of heat exchangers caused by aggressive environment and cyclic stress. It also discusses the effects of design, welding practices, and elevated temperatures on the failures of heat exchangers.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001314
EISBN: 978-1-62708-215-0
... of the horizontal axis coils. Visual examination of the inside of the tubing indicated the presence of a carbonaceous deposit resulting from decomposition of the heat-exchanging fluid. Subsequent metallographic examination and microhardness testing indicated that the steel was heated to a temperature above...
Abstract
A gas-fired, ASTM A-106 Grade B carbon steel vaporizer failed on three different occasions during attempts to bring the vaporizer on line. Dye penetrant examination indicated the presence of multiple packets of ductile cracks on the inside of the coil radius at the bottom of the horizontal axis coils. Visual examination of the inside of the tubing indicated the presence of a carbonaceous deposit resulting from decomposition of the heat-exchanging fluid. Subsequent metallographic examination and microhardness testing indicated that the steel was heated to a temperature above the allowable operating temperature for the fluid. The probable cause for failure is thermal fatigue due to the localized overheating. Flow conditions inside the tubing should be reexamined to ensure suitable conditions for annular fluid flow.
Book Chapter
Cracking at the Threads of Stud Bolts Used for Lifting Plastic Mold Dies
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001378
EISBN: 978-1-62708-215-0
... Abstract Two 38 mm (1.5 in.) diam threaded stud bolts that were part of a steel mold die assembly from a plastics molding operation were examined to determine their serviceability. Chemical analysis showed the material to be a plain carbon steel that approximated 1045. Visual examination...
Abstract
Two 38 mm (1.5 in.) diam threaded stud bolts that were part of a steel mold die assembly from a plastics molding operation were examined to determine their serviceability. Chemical analysis showed the material to be a plain carbon steel that approximated 1045. Visual examination revealed evidence of severe hammer blows to the clevis and boss areas and a gap between the die and the underside of the boss. Magnetic particle inspection showed cracks at the thread roots that, when examined metallographically, were found to contain MnS stringers. The cracking of the threads was attributed to a poor stud bolt design, which allowed a high stress concentration to occur at the base of the threads upon application of a lateral load. It was recommended that bolts of a new design that incorporated a stress-relieving groove be used. Threading of the bolt to eliminate the gap between the lower face of the boss and the die and an improved method of inserting or removing the bolt to avoid hammering (use of a wrench on a square or hexagonal boss) were also recommended.
Book Chapter
Hydrogen Damage in a Waterwall Boiler Tube Section
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001739
EISBN: 978-1-62708-215-0
... Abstract The rear wall tube section of a boiler that had been in service for approximately 38 years was removed and examined. Visual examination of the tube revealed a small bulge with a through-wall crack. Metallography showed that the microstructure of the bulged area consisted of a few...
Abstract
The rear wall tube section of a boiler that had been in service for approximately 38 years was removed and examined. Visual examination of the tube revealed a small bulge with a through-wall crack. Metallography showed that the microstructure of the bulged area consisted of a few partially decarburized pearlite colonies in a ferrite matrix. The microstructure remote from the bulged area consisted of pearlite in a ferrite matrix. EDS analysis of internal deposits on the tube detected a major amount of iron, plus trace amounts of other elements. The evidence indicated that the bulge and crack in the tube resulted from hydrogen damage. Examination of the remaining water circuit boiler tubing using nondestructive techniques and elimination of any heavy deposit buildup was recommended.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001167
EISBN: 978-1-62708-228-0
... Abstract Visual examination, optical and scanning electron microscopy were used to determine the cause of failure in the connector groove of a marine riser coupling. The specified steel was AISI 4142 (0.40 to 0.45% C; 0.75 to 1.00% Mn; 0.20 to 0.35% Si; 0.80 to 1.10% Cr; 0.15 to 0.25% Mo...
Abstract
Visual examination, optical and scanning electron microscopy were used to determine the cause of failure in the connector groove of a marine riser coupling. The specified steel was AISI 4142 (0.40 to 0.45% C; 0.75 to 1.00% Mn; 0.20 to 0.35% Si; 0.80 to 1.10% Cr; 0.15 to 0.25% Mo) normalized from 9000C. Microscopic examination revealed the crack's initiation point and subsequent propagation. SEM examination of chemically stripped corrosion showed that corrosion fatigue and stress corrosion might have contributed to the initial slow crack growth. Impact tests revealed a fracture transition temperature in excess of 1000C. The sequence of events leading to failure was detailed. The main recommendation was to quench and temper existing couplings and to use a lower carbon quenched and tempered steel for new couplings.
Book Chapter
Failure by Stress-Corrosion Cracking of an Ejection Seat Swivel
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0006387
EISBN: 978-1-62708-217-4
... system. Some loads could be absorbed however, when the aircraft is subjected to G loads. Visual examination of the part revealed that cracks through the wall thickness initiated on the inner walls of the fixture. Scanning electron microscopy (SEM) and electron optical examination revealed...
Abstract
A routine examination on a seat ejection system found that the catapult attachment swivel fabricated from 7075-T651 aluminum alloy plate contained cracks on opposite sides of the part. This swivel, or bath tub, does not experience extreme loads prior to activation of the catapult system. Some loads could be absorbed however, when the aircraft is subjected to G loads. Visual examination of the part revealed that cracks through the wall thickness initiated on the inner walls of the fixture. Scanning electron microscopy (SEM) and electron optical examination revealed that the cracking pattern initiated and progressed by an intergranular failure mechanism. It was concluded that failure of the catapult attachment swivel fixture occurred by SCC. It was recommended that the 7075 aluminum ejection seat fixture be supplied in the T-73 temper to minimize susceptibility to SCC.
Book Chapter
Failure of a Helicopter Rotor
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0006444
EISBN: 978-1-62708-217-4
... Abstract Helicopter rotor blade components that included the horizontal hinge pin, the associated nut, and the locking washer were examined. Visual examination of the submitted parts revealed that the hinge pin, fabricated from 4340 steel, was broken and that the fracture face showed a flat...
Abstract
Helicopter rotor blade components that included the horizontal hinge pin, the associated nut, and the locking washer were examined. Visual examination of the submitted parts revealed that the hinge pin, fabricated from 4340 steel, was broken and that the fracture face showed a flat beach mark pattern indicative of a preexisting crack. The threaded area of the pin had an embedded thread that did not appear to come from the pin. A chemical analysis was conducted on the embedded thread and on an associated attachment to determine the origin of the thread. Analysis showed that the thread and nut were 4140 steel. Scanning electron fractographic examination of the fracture initiation site strongly suggested that the fracture progressed by fatigue. It was concluded that the failure of the horizontal hinge pin initiated at areas of localized corrosion pits. The pits in turn initiated fatigue cracks, resulting in a failure mode of corrosion fatigue. It was recommended that all of the horizontal hinge pins be inspected. Those pins determined to be satisfactory for further use should be stripped of cadmium, shot peened, and coated with cadmium to a minimum thickness of 0.0127 mm (0.0005 in.).
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0046022
EISBN: 978-1-62708-217-4
... Abstract A forged aluminum alloy 2014-T6 catapult-hook attachment fitting (anodized by the chromic acid process to protect it from corrosion) from a naval aircraft broke in service. Spectrographic analysis, visual examination, microscopic examination, and tensile analysis showed minute cracks...
Abstract
A forged aluminum alloy 2014-T6 catapult-hook attachment fitting (anodized by the chromic acid process to protect it from corrosion) from a naval aircraft broke in service. Spectrographic analysis, visual examination, microscopic examination, and tensile analysis showed minute cracks on the inside surface of a bearing hole, and small areas of pitting corrosion were visible on the exterior surface of the fitting. The analysis also revealed a small number of rosettes, suggestive of eutectic melting, in an otherwise normal structure. These examinations and analyses support the conclusion that the presence of chromic acid stain on the fracture surface proved that the forging had cracked before anodizing. This suggest that the crack initiated during straightening, either after machining or after heat treatment. The structure and composition of the alloy appear to have been acceptable. Ductility was acceptable so rosettes found in the microstructure are believed to have been nondamaging. Had they contributed to the failure, the ductility would have been very low. The recommendations included inspection for cracks and revising the manufacturing process to include a fluorescent liquid-penetrant inspection before anodizing, because chromic acid destroys the penetrant. This inspection would reduce the possibility of cracked parts being used in service.
Book Chapter
Cracked Aircraft Wing Spar
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0006406
EISBN: 978-1-62708-217-4
... cracking (SCC) and fatigue striations near the crack origin. Visual examination of the crack edge revealed that the installation of the fasteners produced a fit up stress. Further inspection of the opened fracture showed that the crack had been present for some time because a heavy buildup of corrosion...
Abstract
A crack was found in an aircraft main wing spar flange fabricated from 7079-T6 aluminum alloy during a routine nondestructive x-ray inspection after the craft had logged 300 h. Scanning electron microscopy (SEM) revealed an intergranular fracture pattern indicative of stress-corrosion cracking (SCC) and fatigue striations near the crack origin. Visual examination of the crack edge revealed that the installation of the fasteners produced a fit up stress. Further inspection of the opened fracture showed that the crack had been present for some time because a heavy buildup of corrosion products was seen on the fractured surface. Metallographic examination of the flange in the area of fracture initiation showed the presence of end grain exposure, which would promote SCC. Electron optical examination of the fracture clearly showed the flange was cracking by a mixed mode of stress corrosion and fatigue. The cracking was accelerated because of an inadvertent fit up stress during installation. The age of the crack could not be established. However, a reevaluation of prior x-ray inspections in this area would result in some close estimate of the age of the crack. End grain exposure further promoted SCC.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047856
EISBN: 978-1-62708-217-4
... by visual examination. The cracks were originated as circumferential cracks and then propagated transversely into the bearing-bore wall. No inclusions in the master rod were detected by magnetic-particle and x-ray inspection. Three large inclusions lying approximately parallel to the grain direction...
Abstract
The master connecting rod of a reciprocating aircraft engine revealed cracks during routine inspection. The rods were forged from 4337 (AMS 6412) steel and heat treated to a specified hardness of 36 to 40 HRC. H-shaped cracks in the wall between the knuckle-pin flanges were revealed by visual examination. The cracks were originated as circumferential cracks and then propagated transversely into the bearing-bore wall. No inclusions in the master rod were detected by magnetic-particle and x-ray inspection. Three large inclusions lying approximately parallel to the grain direction and fatigue beach marks around two of the inclusions were revealed by macroscopic examination of the fracture surface. Large nonmetallic inclusions that consisted of heavy concentrations of aluminum oxide (Al2O3) were revealed by microscopic examination of a section through the fracture origin. The forging vendors were notified about the excess size of the nonmetallic inclusions in the master connecting rods and a nondestructive-testing procedure for detection of large nonmetallic inclusions was established.
1