Skip Nav Destination
Close Modal
By
Jeffrey Gotro, R. Bruce Prime
By
Paul J. Gramann
By
Jigneshkumar P. Patel, Yanika Schneider, Malavarayan Sankarasubramanian, Vidya Jayaram
By
Kayla Thackeray, Jeffrey Hinkley
By
Jose M. Perez, Jr., Jeffrey Hinkley
By
S.R. Freeman
By
Fahmida Hossain, Veda-Anne Ulčickas
By
Donald E. Duvall
By
Sya Ensha, Paul West, Sachin Attavar
Search Results for
unsaturated polyester resins
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-17 of 17
Search Results for unsaturated polyester resins
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Image
Structure of unsaturated polyester resins. (a) Phthalate esters, (b) Bisphe...
Available to PurchasePublished: 15 May 2022
Fig. 15 Structure of unsaturated polyester resins. (a) Phthalate esters, (b) Bisphenol A/fumarate resins
More
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006929
EISBN: 978-1-62708-395-9
... temperatures. Fig. 15 Structure of unsaturated polyester resins. (a) Phthalate esters, (b) Bisphenol A/fumarate resins Fig. 16 Degradation of glass laminates in water at 100 °C (212 °F) for different polyester-resin matrices. BPA, bisphenol A The mechanism of the moisture-induced...
Abstract
This article provides an overview of the physics and math associated with moisture-related failures in plastic components. It develops key equations, showing how they are used to analyze the causes and effects of water uptake, diffusion, and moisture concentration in polymeric materials and resins. It explains how absorbed moisture affects a wide range of properties, including glass transition temperature, flexural and shear modulus,creep, stress relaxation, swelling, tensile and yield strength, and fatigue cracking. It provides relevant data on common polymers, resins, and fiber-resin composites.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006925
EISBN: 978-1-62708-395-9
... polystyrene TPUR Thermoplastic polyurethane UF Urea-formaldehyde (urea) UP Unsaturated polyester UPVC Unplasticized PVC VLDPE Very-low-density polyethylene XPS Expanded polystyrene Source: Ref 9 , 10 The systematic name is that assigned according to nomenclature rules...
Abstract
This introductory article describes the various aspects of chemical structure that are important to an understanding of polymer properties and thus their eventual effect on the end-use performance of engineering plastics. The polymers covered include hydrocarbon polymers, carbon-chain polymers, heterochain polymers, and polymers containing aromatic rings. The article also includes some general information on the classification and naming of polymers and plastics. The most important properties of polymers, namely, thermal, mechanical, chemical, electrical, and optical properties, and the most significant influences of structure on those properties are then discussed. A variety of engineering thermoplastics, including some that are regarded as high-performance thermoplastics, are covered in this article. In addition, a few examples of commodity thermoplastics and biodegradable thermoplastics are presented for comparison. Finally, the properties and applications of six common thermosets are briefly considered.
Book Chapter
Abbreviations—Characterization and Failure Analysis of Plastics
Available to PurchaseSeries: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006945
EISBN: 978-1-62708-395-9
... Underwriter s Laboratory unsaturated polyester ultraviolet vinyl acetate vinyl chloride vinylidene chloride vacuum hot pressing WDS XMC XPS XRD wavelength dispersive spectroscopy extra-high-strength molding compound X-ray photoelectron spectroscopy X-ray diffraction analysis ACKNOWLEDGMENT This article...
Abstract
This article is a compilation of abbreviations of terms, techniques, standards, compounds, and properties of materials that are relevant to the characterization and failure analysis of plastics.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006923
EISBN: 978-1-62708-395-9
...-formaldehyde (PF) 163 325 150 300 0.25 0.14 16 Unsaturated polyester (UP) 279 535 130 265 0.12 0.07 16 Modified polyphenylene oxide alloy (PPO mod) 100 212 80 175 … … 38 Polyphenylene sulfide (PPS) 260 500 200 390 0.17 30 Polysulfone (PSU) 174 345 140 285 0.26 0.15...
Abstract
This article discusses the thermal properties of engineering plastics and elastomers with respect to chemical composition, chain configuration, and base polymer conformation as determined by thermal analysis. It describes the processing of base polymers with or without additives and their response to chemical, physical, and mechanical stresses whether as an unfilled, shaped article or as a component of a composite structure. It summarizes the basic thermal properties of thermoplastics and thermosets, including thermal conductivity, temperature resistance, thermal expansion, specific heat, and glass transition temperature. It also provides information on polyimide and bismaleimide resin systems. Representative examples of different types of engineering thermoplastics are discussed primarily in terms of structure and thermal properties.
Book Chapter
Characterization of Thermosetting Resins and Polymers
Available to PurchaseSeries: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006924
EISBN: 978-1-62708-395-9
... include phenolic resins, unsaturated polyesters, vinyl esters, polyurethanes, cyanate esters, bismaleimides, addition polyimides, and difunctional acrylates and methacrylates. Thermoset resins are formulated to achieve the desired processing conditions as well as the desired final fully cured...
Abstract
This article discusses the most common thermal analysis methods for thermosetting resins. These include differential scanning calorimetry, thermomechanical analysis, thermogravimetric analysis, and dynamic mechanical analysis. The article also discusses the characterization of uncured thermosetting resins as well as the curing process. Then, the techniques to characterize the physical properties of cured thermosets and composites are presented. Several examples of stress-strain curves are shown for thermosets and thermoplastic polymers.
Book
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.9781627083959
EISBN: 978-1-62708-395-9
Book Chapter
Navigating the Plastic Material Selection Process
Available to PurchaseSeries: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006922
EISBN: 978-1-62708-395-9
... Thermosets Epoxy EP Melamine ME Phenolic PF Unsaturated polyester UP Polyurethane PUR Vinyl ester VE The selection process or narrowing of candidate materials starts by asking key questions or listing the properties that the plastics must satisfy. At each question, plastics...
Abstract
There are many reasons why plastic materials should not be considered for an application. It is the responsibility of the design/materials engineer to recognize when the expected demands are outside of what the plastic can provide during the expected life-time of the product. This article reviews the numerous considerations that are equally important to help ensure that part failure does not occur. It provides a quick review of thermoplastic and thermoset plastics. The article focuses primarily on thermoset materials that at room temperature are below their glass transition temperature. It describes the motivation for material selection and the goal of the material selection process. The use of material datasheets for material selection as well as the processes involved in plastic material selection and post material selection is also covered.
Book Chapter
Fundamentals of Polymer Additives
Available to PurchaseSeries: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006939
EISBN: 978-1-62708-395-9
....) Mexichem TOTM (Mexichem Compuestos) PVC (flexible): wiring, cables, packaging, medical, automotive Polyesters ADK CIZER HPN-3130 (Adeka Corp.) PVC (rigid): wiring, cables, packaging, medical, automotive Source: Ref 73 Plasticizers are also common in the thermoset resins as well...
Abstract
Polymer materials are key building blocks of the modern world, commonly used in packaging, automobiles, building materials, electronics, telecommunications, and many other industries. These commercial applications of polymeric materials would not be possible without the use of additives. This article is divided into five sections: mechanical property modifiers, physical property modifiers, biological function modifiers, processing aids, and colorants. It describes three classes of additives that are used to inhibit biological activity, six classes of mechanical property modifiers, three classes of physical property modifiers, and two classes of both colorants and processing aids.
Book Chapter
Mechanical Testing and Properties of Plastics—An Introduction
Available to PurchaseSeries: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006928
EISBN: 978-1-62708-395-9
... fabric filler 25–65 4–9.5 0.4–0.6 6–9 0.87–1 100–160 15–23 60–100 9–15 95–120 HRM PF, cast, no filler 40–65 6–9.5 1.5–2.0 3 0.43 85–115 12–17 75–115 11–17 93–120 HRM Polyester, glass-fiber filler 35–65 5–9.5 … 11–14 1.6–2.0 140–175 20–25 95–115 14–17 … UF, alpha...
Abstract
This article briefly introduces some commonly used methods for mechanical testing. It describes the test methods and provides comparative data for the mechanical property tests. In addition, creep testing and dynamic mechanical analyses of viscoelastic plastics are also briefly described. The article discusses the processes involved in the short-term and long-term tensile testing of plastics. Information on the strength/modulus and deflection tests, impact toughness, hardness testing, and fatigue testing of plastics is also provided. The article describes tension testing of elastomers and fibers. It covers two basic methods to test the mechanical properties of fibers, namely the single-filament tension test and the tensile test of a yarn or a group of fibers.
Book Chapter
Effects of Composition, Processing, and Structure on Properties of Engineering Plastics
Available to PurchaseSeries: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006915
EISBN: 978-1-62708-395-9
... of cross linking can vary, highly thermoset systems are typically rigid. Thermoset polyurethanes vary from flexible to relatively rigid, depending on the chemical structure between urethane groups. Systems such as unsaturated polyester, epoxy, thermoset polyurethanes, polyureas, phenol formaldehyde...
Abstract
This article provides practical information and data on property development in engineering plastics. It discusses the effects of composition on submolecular and higher-order structure and the influence of plasticizers, additives, and blowing agents. It examines stress-strain curves corresponding to soft-and-weak, soft-and-tough, hard-and-brittle, and hard-and-tough plastics and temperature-modulus plots representative of polymers with different degrees of crystallinity, cross-linking, and polarity. It explains how viscosity varies with shear rate in polymer melts and how processes align with various regions of the viscosity curve. It discusses the concept of shear sensitivity, the nature of viscoelastic properties, and the electrical, chemical, and optical properties of different plastics. It also reviews plastic processing operations, including extrusion, injection molding, and thermoforming, and addresses related considerations such as melt viscosity and melt strength, crystallization, orientation, die swell, melt fracture, shrinkage, molded-in stress, and polymer degradation.
Book Chapter
Analysis and Prevention of Corrosion-Related Failures
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003549
EISBN: 978-1-62708-180-1
... the sample or impregnating the mount with resin after preparation can retain the scale for examination. Additional information is provided in the articles “Practices in Failure Analysis” and “Metallographic Techniques in Failure Analysis” in this Volume. Corrosion Testing Corrosion testing...
Abstract
This article provides an overview of the electrochemical nature of corrosion and analyzes corrosion-related failures. It describes corrosion failure analysis and discusses corrective and preventive approaches to mitigate corrosion-related failures of metals. These include: change in the environment; change in the alloy or heat treatment; change in design; use of galvanic protection; use of inhibitors; use of nonmetallic coatings and liners; application of metallic coatings; use of surface treatments, thermal spray, or other surface modifications; corrosion monitoring; and preventive maintenance.
Book Chapter
Analysis and Prevention of Environmental- and Corrosion-Related Failures
Available to PurchaseSeries: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006782
EISBN: 978-1-62708-295-2
... are sectioned carefully, mounted in a resin compound, ground, and polished to facilitate metallographic examination. The prepared cross sections are called metallurgical mounts and are prepared using standard metallographic techniques. Mounts are examined in the unetched and etched conditions. In the unetched...
Abstract
Corrosion is the deterioration of a material by a reaction of that material with its environment. The realization that corrosion control can be profitable has been acknowledged repeatedly by industry, typically following costly business interruptions. This article describes the electrochemical nature of corrosion and provides the typical analysis of environmental- and corrosion-related failures. It presents common methods of testing of laboratory corrosion and discusses the processes involved in the prevention of environmental- and corrosion-related failures of metals and nonmetals.
Book Chapter
Thermal Stresses and Physical Aging of Plastics
Available to PurchaseSeries: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006932
EISBN: 978-1-62708-395-9
... temperature in semicrystalline polymers ( Ref 10 ). The situation is somewhat different in cross-linked or thermoset processing. In this case, solidification takes place at the cure temperature, because cross links enable the matrix to support stress ( Ref 10 ). Unsaturated polyester and epoxy resins...
Abstract
Engineering plastics, as a general class of materials, are prone to the development of internal stresses which arise during processing or during servicing when parts are exposed to environments that impose deformation and/or temperature extremes. Thermal stresses are largely a consequence of high coefficients of thermal expansion and low thermal diffusivities. Although time-consuming techniques can be used to analyze thermal stresses, several useful qualitative tests are described in this article. The classification of internal stresses in plastic parts is covered. The article describes the effects of low thermal diffusivity and high thermal expansion properties, and the variation of mechanical properties with temperature. It discusses the combined effects of thermal stresses and orientation that result from processing conditions. The article also describes the effect of aging on properties of plastics. It explains the use of high-modulus graphite fibers in amorphous polymers.
Book Chapter
Fracture of Plastics
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003541
EISBN: 978-1-62708-180-1
... mechanism of failure in such polymers. Highly cross-linked polymers, such as epoxies and unsaturated polyesters, are also brittle, yet their fracture involves a microcracking mechanism. On the other hand, semicrystalline polymers, such as PE and nylons, and some amorphous polymers, such as PC...
Abstract
This article reviews the mechanical behavior and fracture characteristics that discriminate structural polymers from metals. It provides information on deformation, fracture, and crack propagation as well as the fractography involving the examination and interpretation of fracture surfaces, to determine the cause of failure. The fracture modes such as ductile fractures and brittle fractures are reviewed. The article also presents a detailed account of various fracture surface features. It concludes with several cases of field failure in various polymers that illustrate the applicability of available analytical tools in conjunction with an understanding of failure mechanisms.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006865
EISBN: 978-1-62708-395-9
.... Highly cross-linked polymers, such as epoxies and unsaturated polyesters, are also brittle, yet their fracture involves a microcracking mechanism. On the other hand, semicrystalline polymers, such as PE and nylons, and some amorphous polymers, such as PC and polyethylene terephthalate (PET), exhibit...
Abstract
This article reviews the mechanical behavior and fracture characteristics that discriminate structural polymers from metals, including plastic deformation. It provides overviews of crack propagation and fractography. The article presents the distinction between ductile and brittle fracture modes. Several case studies of field failure in various polymers are also presented to illustrate the applicability of available analytical tools in conjunction with an understanding of failure mechanisms.
Book Chapter
Surface Examination and Analysis of Plastics
Available to PurchaseSeries: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006943
EISBN: 978-1-62708-395-9
..., metallic particles, and others that are added to plastic resins. Fillers are discussed in more detail in the article “ Fundamentals of Polymer Additives ” in this Volume. Two additional signals generated by electron beams that are valuable in the analysis of materials are Auger electrons...
Abstract
This article discusses the operating principles, advantages, and limitations of scanning electron microscopy, atomic force microscopy, x-ray photoelectron spectroscopy, and secondary ion mass spectroscopy that are used to analyze the surface chemistry of plastics.