Skip Nav Destination
Close Modal
By
Christopher A. Walton, Benjamin E. Nesbit, Henrique M. Candia, Zachary A. Myers, Wilburn R. Whittington ...
Search Results for
ultimate strength
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 281 Search Results for
ultimate strength
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Metallurgical Failure Analysis of a Propane Tank Boiling Liquid Expanding Vapor Explosion (BLEVE)
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Fig. 13 Normal strain rate ultimate tensile strength (UTS) and stress-rupture strengths at various temperatures (as percentage of normal strain rate UTS at room temperature). (Data from Ref 1 and 14)
More
Image
Published: 01 January 2002
Fig. 19 Quantitative correlation between the ultimate tensile strength and the area percentage of voids on the corresponding fracture surfaces of high-pressure die-cast AM60 magnesium alloy specimens having the same dendrite arm spacing. Source: Ref 3
More
Image
Published: 30 August 2021
Fig. 35 Ultimate tensile strength versus hydrogen porosity for sand cast bars of three aluminum alloys
More
Image
in High-Temperature Stress Relaxation Cracking and Stress Rupture Observed in a Coke Gasifier Failure
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Fig. 21 Stress versus temperature curves for Incoloy 825. Notice the decrease in ultimate strength and elongation at temperatures >540 °C. Above 590 °C, the elongation increases rapidly with temperature
More
Image
in Failure Analysis and Mechanical Performance Evaluation of a Cast Aluminum Hybrid-Iron Golf Club Hosel
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Fig. 15 The von Mises stress analysis of the club head region shows the maximum stress of 334 MPa, which is greater than the ultimate strength of A360.0 aluminum alloy (317 MPa). It is evident that there is a stress concentration located where the shaft stops in the hosel region ( Fig. 13b
More
Image
in Metallurgical Failure Analysis of a Propane Tank Boiling Liquid Expanding Vapor Explosion (BLEVE)
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Fig. 12 Ultimate tensile strengths (UTS) of various steels at high temperatures (high-strain-rate UTS at temperature as percentage of high-strain-rate UTS at room temperature). (Adapted from Ref 14)
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001682
EISBN: 978-1-62708-229-7
... the seam welds parallel to the specimen axis, and samples which had the seam welds perpendicular to the specimen axis. Fabrication processes caused the strength of the bellows to be anisotropic. The ultimate strength of the steel in the direction parallel to the seam weld was 621 MPa (90,000 psi) while...
Abstract
The secondary cooling water system pressure boundary of Savannah River Site reactors includes expansion joints utilizing a thin-wall bellows. While successfully used for over thirty years, an occasional replacement has been required because of the development of small, circumferential fatigue cracks in a bellows convolute. One such crack was recently shown to have initiated from a weld heat-affected zone liquation microcrack. The crack, initially open to the outer surface of the rolled and seam welded cylindrical bellows section, was closed when cold forming of the convolutes placed the outer surface in residual compression. However, the bellows was placed in tension when installed, and the tensile stresses reopened the microcrack. This five to eight grain diameter microcrack was extended by ductile fatigue processes. Initial extension was by relatively rapid propagation through the large-grained weld metal, followed by slower extension through the fine-grained base metal. A significant through-wall crack was not developed until the crack extended into the base metal on both sides of the weld. Leakage of cooling water was subsequently detected and the bellows removed and a replacement installed.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001303
EISBN: 978-1-62708-215-0
... , together with the minimum specified properties for separately cast test bars of alloy LM6M. Results of tensile testing Table 2 Results of tensile testing Specimen Ultimate tensile strength Yield strength Elongation (4 D ), % 0.2% 0.1% MPa ksi MPa ksi MPa ksi...
Abstract
A sand-cast LM6M aluminum alloy sprocket drive wheel in an all-terrain vehicle failed. Extensive cracking had occurred around each of the six bolt holes in the wheel. Evidence of considerable deformation in this area was also noted. Examination indicated that the part failed because of gross overload. Use of an alloy with a much higher yield strength and improvement in design were recommended.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001763
EISBN: 978-1-62708-241-9
... are approximated as 50% of the ultimate tensile strength [ 9 ] Fig. 1 Macrograph of the fractured shaft. ( a ) Failed shaft. ( b ) Close view of the fracture surface with cracks propagating at direction of 45°, approximately, to the shaft axis. ( c ) Permanently twisted deformation of spline teeth...
Abstract
This paper presents a failure analysis of a reverse shaft in the transmission system of an all-terrain vehicle (ATV). The reverse shaft with splines fractured into two pieces during operation. Visual examination of the fractured surface clearly showed cracks initiated from the roots of spline teeth. To find out the cause of fracture of the shaft, a finite element analysis was carried out to predict the stress state of the shaft under steady loading and shock loading, respectively. The steady loading was produced under normal operation, while the shock loading could be generated by an abrupt change of operation such as start-up or sudden braking during working. Results of stress analysis reveal that the highest stressed area coincided with the fractured regions of the failed shaft. The maximum stress predicted under shock loading exceeded the yield strength and was believed to be the stimulant for crack initiation and propagation at this weak region. The failure analysis thus showed that the premature fatigue fracture of the shaft was caused by abnormal operation. Finally, some suggestions to enhance service durability of the transmission system of ATV are discussed.
Book Chapter
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001781
EISBN: 978-1-62708-241-9
... in comparison to a cast A360.0 alloy Yield strength, MPa Ultimate tensile strength, MPa Subject club 180 306 Exemplar club 175 299 A360.0 [ 16 ] 165 317 Void analysis results for the subject and exemplar club hosel Table 3 Void analysis results for the subject and exemplar...
Abstract
A commercial hybrid-iron golf club fractured during normal use. The club fractured through its cast aluminum alloy hosel. Optical analysis revealed casting pores through 20% of the hosel thickness. Mechanical properties were determined from characterization results, then used to construct a finite element model to analyze material performance under failure conditions. In addition, a full scale structural test was conducted to determine failure strength. It was concluded that the club failed not from ground impact but from a force reversal at the bottom of the downswing. Large moments generated during the downswing aggravated by manufacturing defects and stress concentration combined to create an overload condition.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001668
EISBN: 978-1-62708-232-7
.... The strength of the detrimentally torqued bolt was between the normal fracture strength and ultimate strength of regularly torqued bolts. Fractographic Examination An SEM examination of the fracture surfaces of the twelve broken bolts indicated a ductile fracture mechanism due to tensile overload...
Abstract
A detailed investigative failure analysis was conducted on an autoclave which blew apart in a furnace for no apparent reason. Bolt failure resulted in separation of the autoclave lid and subsequent destruction of the furnace. Analysis using metallography, fractography, mechanical testing and exemplar tests were performed on the bolt material. Mechanical engineering analysis and leak-before-break criteria were extensively analyzed. Results led to only one possible conclusion: that an explosion occurred within the autoclave. Suggestions for autoclave design are presented as a result of the analysis.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001844
EISBN: 978-1-62708-241-9
... pressure of 130 MPa in the expressions above. Hence, the operating hoop stress are, respectively, σ θ (thick) = 256 MPa and σ θ (thin) = 464 MPa. The yield strength and the ultimate strength of 30CrMnTi material can be obtained from literature [ 6 ], with reference to 30CrMnTi toughened...
Abstract
A cylindrical spiral gear, part of a locomotive axle assembly, cracked ten days after it had been press-fit onto a shaft, after which it sat in place as other repairs were made. Workers at the locomotive shop reported hearing a sound, and upon inspecting the gear, found a crack extending radially from the bore to the surface of one of the tooth flanks. The crack runs the entire width of the bore, passing through an oil hole in the hub, across the spoke plate and out to the tip of one of the teeth. Design requirements call for the gear teeth to be carburized, while the remaining surfaces, protected by an anti-carburizing coating, stay unchanged. Based on extensive testing, including metallographic examination, microstructural analysis, microhardness testing, and spectroscopy, the oil hole was not protected as required, evidenced by the presence of a case layer. This oversight combined with the observation of intergranular fracture surfaces and the presence of secondary microcracks in the case layer point to hydrogen embrittlement as the primary cause of failure. It is likely that hydrogen absorption occurred during the gas carburizing process.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0049797
EISBN: 978-1-62708-235-8
... an equivalent ultimate strength of approximately 1205 MPa (175 ksi). A large flaw was visible on the fracture surface ( Fig. 1 ). It originated from the root of a machined thread groove and extended approximately 6.4 mm (0.25 in.) into the diameter and 38 mm (1.5 in.) around its circumference. The surface...
Abstract
An AISI 4340 threaded steel connecting rod that was part of a connecting linkage used between a parachute and an instrumented drop test assembly fractured under high dynamic loading when the assembly was dropped from an airplane. A large flaw that originated from the root of a machined thread groove was visible on the fracture surface. Heavy oxidation at elevated temperatures was indicated as most of the surface of the flaw was black. Fine secondary cracks aligned transverse to the growth direction was revealed by scanning electron microscopy. It was established that intergranular cracking observed in this alloy was caused during heat treating as the thread root served as an effective stress concentration and induced quench cracking. It was found that fracture in the overload region occurred by a ductile void growth and coalescence process. Premature failure of the threaded rod was thus attributed to the presence of the quench crack flaw caused by an improper machining sequence and heat treatment practice.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001731
EISBN: 978-1-62708-217-4
... Abstract Service failures have occurred in a number of aircraft parts made of quenched and tempered steel heat treated to ultimate tensile strengths of 260,000 to 280,000 psi. Some of these failures have been attributed to “delayed cracking” as a result of hydrogen embrittlement or to stress...
Abstract
Service failures have occurred in a number of aircraft parts made of quenched and tempered steel heat treated to ultimate tensile strengths of 260,000 to 280,000 psi. Some of these failures have been attributed to “delayed cracking” as a result of hydrogen embrittlement or to stress-corrosion. Because of the serious nature of the failures and because the mechanism of the fracture initiation is not well understood, unusually complete laboratory investigations have been conducted. Three of these investigations are reviewed to illustrate the methods used in studying failures in aircraft parts. The results of the laboratory studies indicate that unusual care is necessary in the processing and fabrication of ultra-high-strength steel and in the design and maintenance of the structures in which it is used.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001386
EISBN: 978-1-62708-215-0
..., and 527 HV30, with an average of 523. Discussion The load cells were manufactured from type 420 stainless steel and were fully hardened. At the observed hardness levels, an ultimate strength of 1720 MPa (250 ksi) and a yield strength of 1480 MPa (210 ksi) would be expected. A martensitic stainless...
Abstract
Two type 420 martensitic stainless steel load cell bodies, which had been installed under two of the four legs of a milk storage tank failed in service. The failure occurred near a change in section and involved fracture of the entire cross section. Examination showed a brittle fracture that was preceded by a small fatigue region. Pitting corrosion was evident at the fracture origin. The areas around the load cells had been subjected to regular washdowns using high-pressure hot water, and the pitting was attributed to crevice corrosion between the load cell and the holddown bolts. Prevention of such corrosion by the use of a flexible sealant to eliminate the crevice was recommended.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001852
EISBN: 978-1-62708-241-9
... ductility at elevated temperature. The average properties at this temperature were found to be yield strength of 226 MPa, ultimate strength of 312 MPa, percentage elongation close to 56%, and area reduction close to 77%. Table 3 presents a comparison of property changes at elevated temperature...
Abstract
A 2–3 mm thick electroformed nickel mold showed early cracking under thermal load cycles. To determine the root cause, investigators obtained monotonic and cyclic properties of electroformed nickel at various temperatures and identified possible fatigue mechanisms. With the help of finite element modeling, they analyzed the material as well as the design and in-service application of the mold. They discovered that overconstraining the mold, while it was in service, caused excessive thermal stresses which accelerated crack initiation and propagation. Investigators also proposed remedies to prevent additional failures.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c9001607
EISBN: 978-1-62708-231-0
... it satisfy the minimum tensile strength requirements. Failure of the wire rope was found to be due to fatigue; however, the ultimate fracture of the rope was the result of overload that occurred after fatigue failure had reduced the number of wire strands supporting the load. Fatigue striations...
Abstract
Wire ropes, pulleys, counterweights, and connecting systems are used for auto tensioning of contact wires of electric railways. A wire rope in one such auto tensioning system suffered premature failure. Failure investigation revealed fatigue cracks initiating at nonmetallic inclusions near the surface of individual wire strands in the rope. The inclusions were identified as Al-Ca-Ti silicates in a large number of stringers, and some oxide and nitride inclusions were also found. The wire used in the rope did not conform to the composition specified for AISI 316 grade steel, nor did it satisfy the minimum tensile strength requirements. Failure of the wire rope was found to be due to fatigue; however, the ultimate fracture of the rope was the result of overload that occurred after fatigue failure had reduced the number of wire strands supporting the load.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c0048039
EISBN: 978-1-62708-219-8
... Abstract One of six cables on a passenger elevator was found fractured during a routine inspection. The cable is made of 16-mm steel wire rope designated 8 x 19 G Preformed Extra High Strength Special Traction Elevator Cable with fiber core. Samples of wire from the cable revealed two types...
Abstract
One of six cables on a passenger elevator was found fractured during a routine inspection. The cable is made of 16-mm steel wire rope designated 8 x 19 G Preformed Extra High Strength Special Traction Elevator Cable with fiber core. Samples of wire from the cable revealed two types of fractures: flat-type fractures were observed in 1.2 and 1 mm diam wires and cup-and-cone fractures were observed in 0.6 mm diam wires. A nick observed in the side of one of the larger wires was found to be rusted. Beach marks radiating inward, indicative of fatigue cracking, were also revealed. The smaller wires were found to be slightly oxidized and behaved in a ductile manner under excessive loads before ultimate failure. Flat-type fractures were believed to have resulted from cyclic torsional stresses along with longitudinal cracking. Restriction of free movement of the socket-end in the shackle was found to have promoted fracture due to increased magnitude of stresses. Mechanical damage to surfaces of wires was concluded to be sufficient to cause fatigue cracking under the stresses encountered in service.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0091644
EISBN: 978-1-62708-217-4
... attachment. The bolt was fabricated from PH13-8Mo stainless steel heat treated to have an ultimate tensile strength of 1517 to 1655 MPa (220 to 240 ksi). A water-soluble coolant was used in drilling the bolt hole where this fastener was inserted. Investigation (visual inspection, 265 SEM images, hardness...
Abstract
During a routine inspection on an aircraft assembly line, an airframe attachment bolt was found to be broken. The bolt was one of 12 that attach the lower outboard longeron to the wing carry-through structure. Failure occurred on the right-hand forward bolt in this longeron splice attachment. The bolt was fabricated from PH13-8Mo stainless steel heat treated to have an ultimate tensile strength of 1517 to 1655 MPa (220 to 240 ksi). A water-soluble coolant was used in drilling the bolt hole where this fastener was inserted. Investigation (visual inspection, 265 SEM images, hardness testing, auger emission spectroscopy and secondary imaging spectroscopy, tensile testing, and chemical analysis) supported the conclusion that failure of the attachment bolt was caused by stress corrosion. The source of the corrosive media was the water-soluble coolant used in boring the bolt holes. Recommendations included inspecting for corrosion all the bolts that were installed using the water-soluble coolant at the spliced joint areas, rinsing all machined bolt holes with a noncorrosive agent, and installing new PH13-8Mo stainless steel bolts with a polysulfide wet sealant.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001717
EISBN: 978-1-62708-217-4
... to perform a low hover maneuver to the maintenance facility, where ground crews assembled concrete blocks at the appropriate height to allow the aircraft to safely touch down. The failed part was fabricated from maraging 300 grade steel (2,068 MPa [300 ksi] ultimate tensile strength), and was subjected...
Abstract
The US Army Research Laboratory performed a failure investigation on a broken main landing gear mount from an AH-64 Apache attack helicopter. A component had failed in flight, and initially prevented the helicopter from safely landing. In order to avoid a catastrophe, the pilot had to perform a low hover maneuver to the maintenance facility, where ground crews assembled concrete blocks at the appropriate height to allow the aircraft to safely touch down. The failed part was fabricated from maraging 300 grade steel (2,068 MPa [300 ksi] ultimate tensile strength), and was subjected to visual inspection/light optical microscopy, metallography, electron microscopy, energy dispersive spectroscopy, chemical analysis, and mechanical testing. It was observed that the vacuum cadmium coating adjacent to the fracture plane had worn off and corroded in service, thus allowing pitting corrosion to occur. The failure was hydrogen-assisted and was attributed to stress corrosion cracking (SCC) and/or corrosion fatigue (CF). Contributing to the failure was the fact that the material grain size was approximately double the required size, most likely caused from higher than nominal temperatures during thermal treatment. These large grains offered less resistance to fatigue and SCC. In addition, evidence of titanium-carbo-nitrides was detected at the grain boundaries of this material that was prohibited according to the governing specification. This phase is formed at higher thermal treatment temperatures (consistent with the large grains) and tends to embrittle the alloy. It is possible that this phase may have contributed to the intergranular attack. Recommendations were offered with respect to the use of a dry film lubricant over the cadmium coated region, and the possibility of choosing an alternative material with a lower notch sensitivity. In addition, the temperature at which this alloy is treated must be monitored to prevent coarse grain growth. As a result of this investigation and in an effort to eliminate future failures, ARL assisted in developing a cadmium brush plating procedure, and qualified two Army maintenance facilities for field repair of these components.
1