1-20 of 95 Search Results for

true stress-strain curve analysis

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006919
EISBN: 978-1-62708-395-9
... curves describe the stress/strain relationship in the plastic deformation range and are commonly implemented in tabulated form. In that way, the experimentally measured true-stress/true-strain data can be directly reflected in the simulations. Here, an elastic-viscoplastic constitutive material model...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003513
EISBN: 978-1-62708-180-1
... bound ( Ref 9 ). Option 2 FAC Option 2 FAC is recommended for materials with a high initial work-hardening rate, (e.g., strain-aging mild steels), or for materials with a discontinuous yield point, or when the complete material true stress-strain curve is known. The Option 2 FAC was developed...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006801
EISBN: 978-1-62708-329-4
... to their characteristic shape. On the engineering stress-strain curve, initiation of necking occurs after uniform elongation, which is the engineering strain associated with the ultimate tensile strength. Engineering stress is defined as the load divided by the initial cross-sectional area of the dog bone, while true...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001816
EISBN: 978-1-62708-241-9
... creep (which is an indication of superplasticity) [ 17 ]. Fig. 3 True stressstrain curves at different temperatures and 5 mm/ min crosshead speed ( L 0 = 57 mm) Once 800 °C was determined as a temperature at which the material may present superplastic behavior, tensile tests...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006780
EISBN: 978-1-62708-295-2
... creep. Constant-stress tests (as opposed to constant-load tests) often do not show tertiary behavior ( Fig. 4 ). Fig. 3 Stages of creep deformation. (a) Strain curve for the three stages of creep under constant-load testing (curve A) and constant-stress testing (curve B). (b) Relationship...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003545
EISBN: 978-1-62708-180-1
... in the third stage of tertiary creep. Constant-stress tests (as opposed to constant-load tests) often do not show tertiary behavior. Fig. 3 Stages of creep deformation. (a) Strain curve for the three stages of creep under constant-load testing (curve A) and constant-stress testing (curve B). (b...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006819
EISBN: 978-1-62708-329-4
... reviewed in this article. Specifically, the stress-life ( S - N ) approach, the strain-life (ε- N ) approach, and the fracture mechanics (crack growth) approach are all described herein. These three analytical approaches represent the main pillars of fatigue analysis methods today (2020), each...
Book Chapter

Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003541
EISBN: 978-1-62708-180-1
... polypropylene, lack hydrogen bonds, but because of their good structural geometry, they can serve both as a plastic and as a fiber. Fig. 1 Typical stress-strain curve for a fiber, a plastic, and an elastomer Polymers are increasingly used in load-bearing structural applications. This article...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006865
EISBN: 978-1-62708-395-9
... as a plastic and as a fiber. Fig. 1 Typical stressstrain curve for a fiber, a plastic, and an elastomer Polymers are increasingly used in load-bearing structural applications. This article briefly reviews the mechanical behavior and fracture characteristics that discriminate structural polymers...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006767
EISBN: 978-1-62708-295-2
... introduces the stress analysis of bodies containing cracklike imperfections and the topic of fracture mechanics. The fracture mechanics approach is based on the analysis of the crack tip stress and strain field. The initial approach proposed by George Irwin, the father of fracture mechanics, used the stress...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003530
EISBN: 978-1-62708-180-1
...” in this Volume). This section describes the underlying fundamentals and the relevance and necessity of performing proper stress analysis in conducting a failure analysis. Both plane stress and plane strain are explored, and instances in which seemingly appropriate two-dimensional (2D) analyses lead...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001788
EISBN: 978-1-62708-241-9
.... By application of damage models, it is possible to calculate from the stressstrain values obtained by finite element analysis a specific damage variable of the material due to fatigue loading. In Fig. 1 , a typical extrusion loading cycle is shown. In each cycle, a billet is extruded through the die subjecting...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006797
EISBN: 978-1-62708-295-2
... strength, as shown Fig. 4 where the lower curve became essentially horizontal. This collapse load agrees with the limit-analysis collapse load of 1.5 times the load at yield. The beam made of stainless steel, which strain hardens at a rather high rate, showed no distortion at fiber stresses up to 1.47...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006928
EISBN: 978-1-62708-395-9
... as a consequence of the long-chain nature of polymers. The PE also shows a stiffening due to chain alignment at the highest strains. This postyield stiffening involves shear deformation, as described in Ref 4 . Fig. 1 Typical stress-strain curves for polycrystalline aluminum and semicrystalline...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003573
EISBN: 978-1-62708-180-1
... where the lower curve became essentially horizontal. This collapse load agrees with the limit-analysis collapse load of 1.5 times the load at yield. The beam made of stainless steel, which strain hardens at a rather high rate, showed no distortion at fiber stresses up to 1.47 times the yield strength...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001758
EISBN: 978-1-62708-241-9
... strain (deform) below its yield strength in order to relieve stress. Creep is a time- and temperature-dependent process, typically exhibiting a characteristic curve similar to that shown in Fig. 3 [ 2 ]. As the curve indicates, creep strain accumulation generally takes place in three stages, designated...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006910
EISBN: 978-1-62708-395-9
... to as crazing, in which the apparent crack is really a zone of fibrous material produced by the stress field ahead of the crack. This phenomenon can be present in glassy polymers as well as in semicrystalline materials, being related to microyielding to levels of several hundred percent strain. A similar...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003528
EISBN: 978-1-62708-180-1
... is the strain for a given ϕψ orientation. Figure 1 is a schematic showing the reference axes and direction of measurement. Fig. 1 Definition of the reference axes and the direction of measurement in XRD residual-stress analysis Evaluation of the stress-tensor components, σ ij , is generally...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006768
EISBN: 978-1-62708-295-2
... or how a failure may have occurred. Ideally, samples should be selected from real production populations to more accurately represent the true variance that can be expected within a population. Characterizing a sample population of only one using XRD residual-stress analysis can be risky, because it may...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006807
EISBN: 978-1-62708-329-4
... creep testing and remaining-life assessment, and pressure vessel time-dependent stress analysis showing the effect of stress relaxation at hot spots. creep curve creep testing elevated-temperature life assessment heater tubes high-temperature components hydrogen attacks remaining-life...