Skip Nav Destination
Close Modal
Search Results for
transit fatigue
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 262 Search Results for
transit fatigue
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001822
EISBN: 978-1-62708-241-9
... nondestructive testing, metallography, and scanning electron microscopy. Based on the results, the failure was attributed to transit fatigue, caused during highway transportation. Cracks along the toes of the weld from both the outside and inside surfaces, the transgranular nature of cracking, and the presence...
Abstract
A newly installed pipeline leaked during cleaning prior to hydrotest at a pressure of approximately 400 psig. The intended hydrotest pressure was 750 psig. The pipeline was constructed from spiral-welded API 5L-X65 HSLA steel and was intended for seawater injection. Analysis included nondestructive testing, metallography, and scanning electron microscopy. Based on the results, the failure was attributed to transit fatigue, caused during highway transportation. Cracks along the toes of the weld from both the outside and inside surfaces, the transgranular nature of cracking, and the presence of fatigue striations all supported transit fatigue as the damage mechanism.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001040
EISBN: 978-1-62708-214-3
... Abstract Failed portions of a 4140 steel axle from a prototype urban transit vehicle were examined to determine the cause of failure. The testing procedures included visual examination, macrofractography, metallography, chemical analysis, and hardness and tensile testing. The analysis showed...
Abstract
Failed portions of a 4140 steel axle from a prototype urban transit vehicle were examined to determine the cause of failure. The testing procedures included visual examination, macrofractography, metallography, chemical analysis, and hardness and tensile testing. The analysis showed that a salvage welding repair had resulted in the formation of martensite that developed cracks, leading to fatigue failure of the axle. It was recommended that no weld buildup or repair be permitted on the axles.
Image
Published: 01 January 2002
Fig. 12 Schematic illustration of transition from flat (tensile mode) fatigue crack propagation to growth on a slant plane (shear mode). Propagation on a slant plane can occur in relatively thin, tough materials at high growth rates. Source: Ref 14
More
Image
Published: 01 January 2002
Fig. 13 Transition from stage I to stage II fatigue. (a) Change in fracture path from stage I (top of photo) to stage II (bottom) (b) Transition from stage I to stage II of a fatigue fracture in a coarse-grain specimen of aluminum alloy 2024-T3. Source: Ref 10
More
Image
in Damage of a Screw in the Seal Coupling
> ASM Failure Analysis Case Histories: Mechanical and Machine Components
Published: 01 June 2019
Fig. 3 Transition between the fracture arising from corrosion fatigue (dark surface), and the surface arising from ductile fracture. SEM, 500×
More
Image
Published: 15 January 2021
Fig. 12 Schematic illustration of transition from flat (tensile mode) fatigue crack propagation to growth on a slant plane (shear mode). Propagation on a slant plane can occur in relatively thin, tough materials at high growth rates. Source: Ref 14
More
Image
Published: 15 January 2021
Fig. 21 Transition from stage I to stage II fatigue. (a) Change in fracture path from stage I (top of photo) to stage II (bottom). (b) Transition from stage I to stage II of a fatigue fracture in a coarse-grained specimen of aluminum alloy 2024-T3. Source: Ref 20
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001195
EISBN: 978-1-62708-227-3
... Abstract A connecting rod from a motor boat was broken in two places at the small end. At position I there was a fatigue fracture brought about by operational stress, whereas the fibrous fracture surface II was a secondary tensile fracture. Furthermore the transition on the other side...
Abstract
A connecting rod from a motor boat was broken in two places at the small end. At position I there was a fatigue fracture brought about by operational stress, whereas the fibrous fracture surface II was a secondary tensile fracture. Furthermore the transition on the other side of the rod was cracked symmetrically to the fatigue fracture (position III). Magnetic inspection showed indications of cracking at the transition between the rod and small end in six other connecting rods from the same batch. Metallographic investigation showed the connecting rods were rendered susceptible to fatigue by the notch effect of coarse scale-filled folds formed during forging.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0047121
EISBN: 978-1-62708-218-1
... of 40 to 46 HRC. Visual inspection and 100x micrographs showed the fracture surface as having a complex type of fatigue failure initiated from subsurface inclusions in the transition zone between the induction-hardened surface and the softer core. The fractured shaft was examined for chemical...
Abstract
A 1050 steel crankshaft with 6.4 cm (2.5 in.) diam journals that measured 87 cm (34.25 in.) in length and weighed 31 kg (69 lb) fractured in service. The shaft had been quenched and tempered to a hardness of 19 to 26 HRC, then selectively hardened on the journals to a surface hardness of 40 to 46 HRC. Visual inspection and 100x micrographs showed the fracture surface as having a complex type of fatigue failure initiated from subsurface inclusions in the transition zone between the induction-hardened surface and the softer core. The fractured shaft was examined for chemical composition and hardness, both of which were found to be within prescribed limits. This evidence supports the conclusions that the failure was caused by fatigue cracks that initiated in an area having an excessive amount of inclusions. The inclusions were located in a transition zone, which is a region of high stress. No recommendations were made.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001231
EISBN: 978-1-62708-232-7
... extended from the gear side to more than half the rim width. A second incipient failure commenced from the opposite tooth bottom. Both fractures joined below the tooth of the rim. Both incipient cracks were fatigue fractures with several starting points, all located in the transition between tooth flank...
Abstract
The rim of a gear wheel of 420 mm width and 3100 mm in diam broke after four years of operation time in a sheet bar three-high rolling mill. The rim was forged from steel with about 0.4C, 0.8Si and 1.1Mn. The rim started to break in the tooth bottom from a fatigue fracture which extended from the gear side to more than half the rim width. A second incipient failure commenced from the opposite tooth bottom. Both fractures joined below the tooth of the rim. Both incipient cracks were fatigue fractures with several starting points, all located in the transition between tooth flank and tooth bottom. The remaining failure was a fine-grained ductile fracture. It was found that the teeth were not supported uniformly over the entire width and were thus overloaded on one side. The transition from the tooth flanks to the tooth bottom was sharp-edged, causing a tension peak there. The tooth bottom was machined only roughly. Also, the yield point was a little bit too low.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c0048407
EISBN: 978-1-62708-226-6
... only after a fatigue crack begins to propagate into the small plate section. A large secondary crack which had developed parallel to the main crack in the center of the surface was revealed. The fifth hole was situated at the transition between the supporting bone and the defect and hence stress...
Abstract
The plate used to treat a pseudarthrosis in the proximal femur was investigated for reasons of non-progress of healing. Fatigue cracks were revealed on the top surface of the small section of the plate at the fifth screw hole. The plate was found to be heavily loaded by comparison of intensity of these structures, compared to results of systematic crack-initiation experiments. It was revealed by fatigue bending tests that the fatigue life of plates with asymmetrically arranged holes is at least as long as for plates with holes situated in the center. Fatigue began at the large section only after a fatigue crack begins to propagate into the small plate section. A large secondary crack which had developed parallel to the main crack in the center of the surface was revealed. The fifth hole was situated at the transition between the supporting bone and the defect and hence stress concentration was revealed to be high.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001847
EISBN: 978-1-62708-241-9
... Abstract An investigation was conducted to determine what caused a bearing sleeve in a locomotive turbocharger to fail. The sleeve, which is made of nitrided 38CrMoAl steel, fractured at the transition fillet between the cylinder and plate. Visual examination revealed significant wear...
Abstract
An investigation was conducted to determine what caused a bearing sleeve in a locomotive turbocharger to fail. The sleeve, which is made of nitrided 38CrMoAl steel, fractured at the transition fillet between the cylinder and plate. Visual examination revealed significant wear on the external surface of the cylinder, with multiple origin fatigue fracture appearing to be the dominant fracture mechanism. Metallurgical examination indicated that the nitrided layer was not as deep as it was supposed to be and had worn away on the outer surface of the sleeve, exposing the soft matrix underneath. This led to further wear and an increase in friction between the sleeve and bearing bush. Fatigue crack initiation occurred at the root fillet because of stress concentration and large frictional forces. Insufficient nitriding depth facilitated the propagation of fatigue cracks.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001135
EISBN: 978-1-62708-219-8
... and coarse grain structure had a lower than expected toughness and a transition temperature 90°F higher than specified by the ASTM standards. The fatigue crack growth rate through this area was much faster than expected. All of these property changes can be explained due to increased carbon levels, higher...
Abstract
In 1979, during a routine bridge inspection, a fatigue crack was discovered in the top flange plate of one tie girder in a tied arch bridge crossing the Mississippi River. Metallographic analysis indicated a banding or segregation problem in the middle of the plate, where the carbon content was twice what it should have been. Based on this and results of ultrasonic testing, which revealed that the banding occurred in 24-ft lengths, it was decided to close the bridge and replace the defective steel. The steel used in the construction of this bridge was specified as ASTM A441, commonly used in structural applications. Testing showed an increase in hardness and weight percent carbon and manganese in the banded region. Further testing revealed that the area containing the segregation and coarse grain structure had a lower than expected toughness and a transition temperature 90 deg F higher than specified by the ASTM standards. The fatigue crack growth rate through this area was much faster than expected. All of these property changes resulted from increased carbon levels, higher yield strength, and larger than normal grain size.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0048814
EISBN: 978-1-62708-229-7
... Abstract A nuclear steam-generator vessel constructed of 100-mm thick SA302, grade B, steel was found to have a small leak. The leak originated in the circumferential closure weld joining the transition cone to the upper shell. The welds had been fabricated from the outside by the submerged arc...
Abstract
A nuclear steam-generator vessel constructed of 100-mm thick SA302, grade B, steel was found to have a small leak. The leak originated in the circumferential closure weld joining the transition cone to the upper shell. The welds had been fabricated from the outside by the submerged arc process with a backing strip. The backing was back gouged off, and the weld was completed from the inside with E8018-C3 electrodes by the shielded metal arc process. Striations of the type normally associated with progressive or fatigue-type failures including beach marks that allowed tracing the origin of the fracture to the pits on the inner surface of the vessel were revealed. Copper deposits with zinc were revealed by EDS examination of discolorations. Pitting was revealed to have been caused by poor oxygen control in the steam generators and release of chloride into the steam generators. It was concluded by series of controlled crack-propagation-rate stress-corrosion tests that A302, grade B, steel was susceptible to transgranular stress-corrosion attack in constant extension rate testing with as low as 1 ppm chloride present. It was recommended to maintain the coolant environment low in oxygen and chloride. Copper ions in solution should be eliminated or minimized.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001011
EISBN: 978-1-62708-229-7
... of failure involved overheating of the Cr-Mo outlet tubes, heavy oxidation, oxide cracking on thermal cycling, thermal fatigue cracking plus oxidation, creep-controlled crack growth, and rapid plastic deformation and rupture. This failure was indicative of excess temperature of the steam coming from the heat...
Abstract
After some 87,000 h of operation, failure took place in the bend of a steam pipe connecting a coil of the third superheater of a steam generator to the outlet steam collector. The unit operated at 538 deg C and 135 kPa, producing 400 t/h of steam. The 2.25Cr-1Mo steel pipe in which failure took place was 50.8 mm in diam with a nominal wall thickness of 8 mm. It connected to the AISI 321 superheater tube by means of a butt weld and was one of 46 such parallel connecting tubes. The Cr-Mo tubing was situated outside the heat transfer zone of the superheater. The overall sequence of failure involved overheating of the Cr-Mo outlet tubes, heavy oxidation, oxide cracking on thermal cycling, thermal fatigue cracking plus oxidation, creep-controlled crack growth, and rapid plastic deformation and rupture. This failure was indicative of excess temperature of the steam coming from the heat transfer zone of the coil. It showed that many damage mechanisms may combine in the transition from fracture initiation to final failure. The presence of grain boundary sliding as an indication of creep damage was useful in the characterization of the stress level as high and showed that the process of creep was not operative throughout the life of the equipment.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001146
EISBN: 978-1-62708-229-7
... of a fatigue contribution. The cracking was characteristic of very low temperature cracking. The NDTT for this material is considered to be approximately −60°F (−51°C) based upon the results of the impact tests performed and fracture faces examined. Since the transition temperature for this material...
Abstract
A metallurgical failure analysis was performed on pieces of the cracked vent header pipe from the Edwin I. Hatch Unit 2 Nuclear power plant. The analysis consisted of optical microscopy, chemical analysis, mechanical Charpy impact testing, and fractography. It was found that the material of the vent header met the mechanical and chemical properties of ASTM A516 Grade 70 carbon-manganese steel material and microstructures were consistent with this material. Fracture faces of the cracked pipe were predominantly brittle in appearance with no evidence of fatigue contribution. The NDTT (Nil ductility Transition Temperature) for this material was approximately -51 deg C (-60 deg F). The fact that the material's NDTT was significantly out of the normal operating range of the pipe suggested an impingement of low temperature nitrogen (caused by a faulty torus inerting system) induced a thermal shock in the pipe which, when cooled below its NDTT, cracked in a brittle manner.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006929
EISBN: 978-1-62708-395-9
... materials and resins. It explains how absorbed moisture affects a wide range of properties, including glass transition temperature, flexural and shear modulus,creep, stress relaxation, swelling, tensile and yield strength, and fatigue cracking. It provides relevant data on common polymers, resins, and fiber...
Abstract
This article provides an overview of the physics and math associated with moisture-related failures in plastic components. It develops key equations, showing how they are used to analyze the causes and effects of water uptake, diffusion, and moisture concentration in polymeric materials and resins. It explains how absorbed moisture affects a wide range of properties, including glass transition temperature, flexural and shear modulus,creep, stress relaxation, swelling, tensile and yield strength, and fatigue cracking. It provides relevant data on common polymers, resins, and fiber-resin composites.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c9001496
EISBN: 978-1-62708-231-0
... Abstract A failed spiral gear and pinion set made from 4320H Ni-Cr-Mo alloy steel operating in a high-speed electric traction motor gear unit driving a rapid transit train were submitted for analysis. The pinion was intact, but the gear had broken into two sections that resulted when two...
Abstract
A failed spiral gear and pinion set made from 4320H Ni-Cr-Mo alloy steel operating in a high-speed electric traction motor gear unit driving a rapid transit train were submitted for analysis. The pinion was intact, but the gear had broken into two sections that resulted when two fractured areas went through the body of the gear. Wheel mileage of the assembly was 34,000 miles at the time of failure. All physical and metallurgical characteristics were well within specified standards, and both parts should have withstood normal loading conditions. The primary mode of failure was tooth bending fatigue of the gear from the reverse direction near the toe end. The cause of failure was a crossed-over tooth bearing condition that placed loads at the heel end when going forward and at the toe end when going in reverse. The condition was too consistent to be a deflection under load; therefore, it most likely was permanent misalignment within the assembly.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001203
EISBN: 978-1-62708-235-8
... along the welds. The cleaved fractures in the burned notches propagated partially above and partially below several incipient cracks which may have been fatigue fractures. Metallographic sections showed that the fractures had occurred either at the burned notches near the transition from the weld...
Abstract
Three bearing bosses from the cover of scrap shears were sent in for examination. They had torn off the base plate to which they had been welded by fillet welds all around. Two of these were examined. They showed entirely the same symptoms. The bosses had broken away on three sides along the welds. The cleaved fractures in the burned notches propagated partially above and partially below several incipient cracks which may have been fatigue fractures. Metallographic sections showed that the fractures had occurred either at the burned notches near the transition from the weld to the sheet, or else they ran in the sheet material next to the weld. The quality of the welds could not be judged because the opposite fracture pieces to which they adhered had not been sent in. It was concluded that the breakaway of these bosses was at least favored by overheating and hardening.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0089459
EISBN: 978-1-62708-235-8
... specifications. The fractures were revealed to be in areas of the transition regions that had been rough ground to remove flash along the parting line. The presence of beach marks, indicating fatigue failure, was revealed by examination. The fracture origin was confirmed by the location and curvature of beach...
Abstract
The connecting end of two forged medium-carbon steel rods used in an application in which they were subjected to severe low-frequency loading failed in service. The fractures extended completely through the connecting end. The surface hardness of the rods was found to be lower than specifications. The fractures were revealed to be in areas of the transition regions that had been rough ground to remove flash along the parting line. The presence of beach marks, indicating fatigue failure, was revealed by examination. The fracture origin was confirmed by the location and curvature of beach marks to be the rough ground surface. An incipient crack 9.5 mm along with several other cracks on one of the fractured rods was revealed by liquid penetration examination. Metallographic examination of the fractured rods indicated a banded structure consisting of zones of ferrite and pearlite. It was established that the incipient cracks found in liquid-penetrant inspection had originated at the surface in the banded region, in areas of ferrite where this constituent had been visibly deformed by grinding. Closer control on the microstructure, hardness of the forgings and smooth finish in critical area was recommended.
1