Skip Nav Destination
Close Modal
By
Friedrich Karl Naumann, Ferdinand Spies
By
G.E. Totten, M. Narazaki, R.R. Blackwood, L.M. Jarvis
By
Friedrich Karl Naumann, Ferdinand Spies
By
Friedrich Karl Naumann, Ferdinand Spies
By
Friedrich Karl Naumann, Ferdinand Spies
By
Friedrich Karl Naumann, Ferdinand Spies
By
Yogesh Pathak, V. S. Aher
By
Friedrich Karl Naumann, Ferdinand Spies
By
Friedrich Karl Naumann, Ferdinand Spies
By
Friedrich Karl Naumann, Ferdinand Spies
By
Nausheen Naz, Fawad Tariq, Rasheed Ahmed Baloch
By
Roch J. Shipley, David A. Moore, William Dobson
By
Friedrich Karl Naumann, Ferdinand Spies
By
D.A. Moore, K.F. Packer, A.J. Jones, D.M. Carlson
Search Results for
transformation hardening
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 141
Search Results for transformation hardening
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Investigation of a Case Hardened Sleeve
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001214
EISBN: 978-1-62708-235-8
... Abstract A case-hardened sleeve made of C 15 (Material No. 1.0401) was flattened at two opposing sides and had cracked open at these places, the crack initiating at a face plane. The wall of the sleeve was 9 mm thick, but the flat ends were machined down to 5.5 mm from the outside. The customer...
Abstract
A case-hardened sleeve made of C 15 (Material No. 1.0401) was flattened at two opposing sides and had cracked open at these places, the crack initiating at a face plane. The wall of the sleeve was 9 mm thick, but the flat ends were machined down to 5.5 mm from the outside. The customer had specified a 2 mm case depth and a hardness of at least HRC 55 at a depth of 1.5 mm. An etched cross section of the cracked end showed that the case layer had a depth of 2.3 mm, so that the sleeve was almost through-hardened at the flat ends. While the core material with the full wall thickness had the quench structure of low-carbon steel, the structure of the flattened area consisted of coarse acicular martensite with a small amount of pearlite (quench troostite) and ferrite. Therefore the sleeve was overheated and probably quenched directly from case. To prevent damage, it would have been necessary to have a lower case depth, carburize less deeply, and prevent overheating that causes brittleness and leads also to increased case depth, or else use a fine-grained steel of lower hardenability.
Book Chapter
Failures Related to Heat Treating Operations
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003510
EISBN: 978-1-62708-180-1
..., a relatively hard transformation product; and to achieve the desired as-quenched hardness. The most common transformational products that may be formed from austenite in quench-hardenable steels are, in order of formation with decreasing cooling rate: martensite, bainite, pearlite, ferrite, and cementite...
Abstract
This article provides an overview of the effects of various material- and process-related parameters on residual stress, distortion control, cracking, and microstructure/property relationships as they relate to various types of failure. It discusses phase transformations that occur during heat treating and describes the metallurgical sources of stress and distortion during heating and cooling. The article summarizes the effect of materials and the quench-process design on distortion and cracking and details the effect of cooling characteristics on residual stress and distortion. It also provides information on the methods of minimizing distortion and tempering. The article concludes with a discussion on the effect of heat treatment processes on microstructure/property-related failures.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006816
EISBN: 978-1-62708-329-4
... and contraction that occurs within a part because of thermal gradients during heating and cooling. In addition to thermal stresses, steels are subjected to transformation stresses when they are hardened to martensite during quenching. Some specific problem areas associated with distortion and cracking...
Abstract
This article introduces some of the general sources of heat treating problems with particular emphasis on problems caused by the actual heat treating process and the significant thermal and transformation stresses within a heat treated part. It addresses the design and material factors that cause a part to fail during heat treatment. The article discusses the problems associated with heating and furnaces, quenching media, quenching stresses, hardenability, tempering, carburizing, carbonitriding, and nitriding as well as potential stainless steel problems and problems associated with nonferrous heat treatments. The processes involved in cold working of certain ferrous and nonferrous alloys are also covered.
Book Chapter
Welded Pipes with Hard Spots
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001207
EISBN: 978-1-62708-235-8
... examination showed welding conditions were such that a carburizing atmosphere developed, which led to an increase in carbon content and hardening at certain locations such as terminal bells and lap joints. This explained the processing difficulties during the threading operation. Hardening Pipe Weld...
Abstract
Pipes made of low-carbon Thomas steel had been welded longitudinally employing the carbon-arc process with bare electrode wire made for argon-shielded arc welding. Difficulties were encountered during the cutting of threads because of the presence of hard spots. Microstructural examination showed welding conditions were such that a carburizing atmosphere developed, which led to an increase in carbon content and hardening at certain locations such as terminal bells and lap joints. This explained the processing difficulties during the threading operation.
Book Chapter
Fracture of Tempered Leaf Springs
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001185
EISBN: 978-1-62708-228-0
... of the springs was caused by stress cracks as a consequence of local hardening. The hardening caused by melting and resolidification, and therefore the cracks in the springs, was the result of a faulty procedure during cadmium electroplating. Cadmium plating Leaf springs Stress cracking C 88 Surface...
Abstract
U-shaped leaf springs, intended to serve as spacers between oil tank floats and the inner walls of the containers, broke while being fitted, or after a short time in use, in the bend of the U. The springs were made of tempered strip steel of type C 88 with 0.84 % C, bent at room temperature, and electroplated with cadmium for protection against corrosion. Each fracture showed seven or eight kidney-shaped cracks. At the origins of these cracks on the concave inner surface of the springs, crater-like depressions and beads of melted and resolidified material were found. Fracture of the springs was caused by stress cracks as a consequence of local hardening. The hardening caused by melting and resolidification, and therefore the cracks in the springs, was the result of a faulty procedure during cadmium electroplating.
Book Chapter
Steel Socket Pipe Conduit Cracked Next to Weld Seam
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001257
EISBN: 978-1-62708-235-8
.... The uncracked pipe consisted of soft steel that obviously was made for this purpose, while the cracked pipe consisted of a strongly-hardenable steel which contained not only more carbon and manganese than customary but also a considerable amount of chromium. Therefore, the damage was caused by a mix-up...
Abstract
A steel socket pipe conduit NW 150 cracked open during pressure testing next to the weld seam almost along the entire circumference. The crack occurred in part in the penetration notch and in part immediately adjacent to it. While the uncracked pipe showed the light etch shading of a low-carbon steel in which the zone heated during welding was delineated only slightly next to the seam, the other pipe was etched much darker, i.e., higher in carbon, and the heated zone appeared to stand out darkly against the basic material. The overlapping weld was defect-free and dense. The uncracked pipe consisted of soft steel that obviously was made for this purpose, while the cracked pipe consisted of a strongly-hardenable steel which contained not only more carbon and manganese than customary but also a considerable amount of chromium. Therefore, the damage was caused by a mix-up of materials that allowed an unsuitable steel to be used for the weldment.
Book Chapter
Metallic Inclusions in Steel
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001184
EISBN: 978-1-62708-235-8
... and was adapted to the latter by diffusion only at the periphery of the inclusion. In another section of a hardened piece of the same chromium steel, the steel in this case had a structure of martensite with hypereutectic carbide, while the inclusions consisted of a very fine laminated eutectoid of the lower...
Abstract
Examples of metallic inclusions in steels of various types are presented. The structure of an inclusion in an annealed Fe-1C-1.5Cr steel consisted of ferrite with lamellar pearlite. The carbon content of the inclusion was therefore considerably lower than that of the chromium steel and was adapted to the latter by diffusion only at the periphery of the inclusion. In another section of a hardened piece of the same chromium steel, the steel in this case had a structure of martensite with hypereutectic carbide, while the inclusions consisted of a very fine laminated eutectoid of the lower pearlite range (Troostite). In a pipe of 18-8 austenitic stainless steel a weakly magnetizable spot of limited size was found. This inclusion too was probably more alloy-deficient than the austenitic steel, similar to the ones described above. All three cases were casting defects.
Book Chapter
Analysis of Bearing Cup Assembly Failure in Drive Shaft Assembly
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001759
EISBN: 978-1-62708-241-9
... tempered martensite. Core microstructure is hardened and tempered structure with upper transformation product. Figure 6 shows micrograph at X100 magnification. Fig. 6 Microstructure of SAE 1117 carburized and hardened specimen Nital 3% ×100 Hardness Measurements Hardness was measured...
Abstract
A bearing cup in a drive shaft assembly on an automobile was found to have failed. A detailed analysis was conducted using the QC story approach, which begins by proposing several possible failure scenarios then following them to determine the main root cause. A number of alternative solutions were identified and then validated based on chemical analysis, endurance and hardness tests, and microstructural examination. The investigation revealed that carbonitriding can effectively eliminate the type of failure encountered because it prevents through hardening of the bearing cup assembly.
Book Chapter
Examination of Wires for the Manufacture of Tempered Bolts
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c9001259
EISBN: 978-1-62708-233-4
... doubtlessly also contributed to this, which could not be prevented by working because the thread was rolled. It is well known 1 that stresses occur. during hardening of case decarburized parts through an advance of the γ-α-transformation which can lead to quench cracks. Incidentally, hardening tests...
Abstract
A bolt manufacturer observed that products made from certain shipments of steel 41 Cr4 wire were prone to the formation of quench cracks in their rolled threads. The affected wire was tested and found to be highly sensitive to overheating because of the metallurgical method by which it was produced. A stronger decarburization of the case was a contributing factor that could not be prevented by working because the thread was rolled. Hardening tests conducted by the bolt manufacturer showed that quench cracks did not occur in specimens that were turned down before hardening and when notches were machined instead of beaten with a chisel.
Book Chapter
Fatigue Fracture and Weld
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001152
EISBN: 978-1-62708-234-1
.... Sometimes, they alone initiate cracks in the weld or in the basic material, especially if the steel is hardenable, i.e. if due to fast cooling transformation in martensite occurs 1 . Fast cooling rates occur during welding, because the welding heat is quickly conducted into the relatively massive and cold...
Abstract
Thermal and transformation stresses, resulting from welding, adding up with operational stresses can result in failure. Examples involving the crankshaft of a shaft-drive to produce artificial waves in a swimming pool, the joint bar of a dredger cast out of a running non-alloyed steel with 39 kg/sq mm tensile strength, which had been strengthened by welding plate strips on both sides had fractured in service; an axle tube out of 40 Mn 4 after DIN 17 200 from a paper fabrication machine, which had three short longitudinal slits distributed uniformly over its surface; welding to repair worn out bearing or fits, and a broken rear axle tube of a bus are described.
Image
Deformation of medium-carbon and hardenable steel bars by quenching from be...
Available to PurchasePublished: 01 January 2002
Fig. 15 Deformation of medium-carbon and hardenable steel bars by quenching from below and above the transformation temperature and by stress relieving. l c , change of length; WQ, water quench; OQ, oil quench. (a) to (c) JIS S38C steel (0.38% C). (d) to (f) JIS SNCM 439 steel (0.39% C, 1.8
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001595
EISBN: 978-1-62708-235-8
... modification through heat treatment is hardenability. Hardenability is a term used to quantify the relative response of a material to thermal treatment transformation to martensite based upon alloying elements and other variables. Many researchers have empirically determined the individual and combined effects...
Abstract
Hardenability evaluation is typically applied to heat treatment process control, but can also augment standard metallurgical failure analysis techniques for steel components. A comprehensive understanding of steel hardenability is an essential complement to the skills of the metallurgical failure analyst. The empirical information supplied by hardenability analysis can provide additional processing and service insight to the investigator. The intent of this paper is to describe some applications of steel thermal response concepts in failure analysis, and several case studies are included to illustrate these applications.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001308
EISBN: 978-1-62708-215-0
... to exist in this particular rail from fit-up distortion, flame-hardening treatment, and weld repairs. Circumstances Leading to Failure The first crack in the rail appeared immediately following installation and heat treatment. The rail flange separated with a loud report; no load had yet been...
Abstract
Persistent cracking in a forged 1080 steel turntable rail in a wind tunnel test section was investigated. All cracks were oriented transverse to the axis of the rail, and some had propagated through the flange into the web. Through-flange cracks had been repair welded. A section of the flange containing one through-flange crack was examined using various methods. Results indicated that the cracks had initiated from intergranular quench cracks caused by the use of water as the quenching medium. Brittle propagation of the cracks was promoted by high residual stresses acting in conjunction with applied loads. Repair welding was discontinued to prevent the introduction of additional residual stress., Finite-element analysis was used to show that the rail could tolerate existing cracks. Periodic inspection to monitor the degree of cracking was recommended.
Book Chapter
Broken Rear Wheel Suspension
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c9001157
EISBN: 978-1-62708-218-1
... of the disk. The welding heat and rapid cooling caused the base material of the disk – already with a martensitic structure – to harden throughout the torus, both of which caused cracking in the inner and outer fillets at the transition from bushing to disk. Visual inspection of the other rear wheel showed...
Abstract
A suspension bushing separated from the disk on the rear wheel suspension of a racing vehicle while under operation on an express highway, causing the wheel to detach from the car. Visual inspection showed fresh turning grooves at four built-up fillet welds on the torus of the outside of the disk. The welding heat and rapid cooling caused the base material of the disk – already with a martensitic structure – to harden throughout the torus, both of which caused cracking in the inner and outer fillets at the transition from bushing to disk. Visual inspection of the other rear wheel showed similar stress cracks in the hardened base material of the transition region as well as the same four welds. Rough finishing and the sharp-edged formation of the cross section transition may have also contributed to the failure. The results of the investigation suggested that machine shops neither execute nor permit repair-welds on highly stressed machine parts and especially vehicle components.
Book Chapter
Fracture of a Rail Arising From Flame-Cutting
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c9001444
EISBN: 978-1-62708-231-0
...-cutting, a narrow band of material on each side of the cut was raised above the hardening temperature. When the torch had passed the rate of abstraction of heat from this zone by conduction into the cold mass of the rail was sufficiently rapid to amount to a quench and thus cause local hardening...
Abstract
To permit bolting of a 90 lb/yd. flat-bottomed rail to a steel structure, rectangular slots 2 in. wide x 1 in. deep were flame-cut in the base of the rail at 2 ft intervals to suit existing bolt holes. During subsequent handling, one of the rails (which were about 25 ft long) was dropped from a height of approximately 6 ft on to a concrete floor and it fractured into 11 pieces, each break occurring at a slot. The sample piece submitted for examination showed a wholly brittle fracture at each end, the fractures having originated at the sharp corners of the slots. During flame-cutting, a narrow band of material on each side of the cut was raised above the hardening temperature. When the torch had passed the rate of abstraction of heat from this zone by conduction into the cold mass of the rail was sufficiently rapid to amount to a quench and thus cause local hardening. The steel in the regions of the slots possessed little capacity for deformation, and fracturing of the martensitic layer, under cooling or impact stresses, would be likely to occur. The slots should have been cut mechanically.
Book Chapter
Failure Analysis of HAZ Cracking in Low C-CrMoV Steel Weldment
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001837
EISBN: 978-1-62708-241-9
... in the tendency for martensitic transformations and the hardenability therefore increases. This increase in hardenability is responsible for the transformation of austenite into martensite even under the conditions of slow cooling. The coarse microstructure produced is therefore higher in hardness as compared...
Abstract
This case study describes the failure analysis of a steel nozzle in which cracking was observed after a circumferential welding process. The nozzle assembly was made from low-carbon CrMoV alloy steel that was subsequently single-pass butt welded using gas tungsten arc welding. Although no cracks were found when the welds were visually inspected, X-ray radiography showed small discontinuous surface cracks adjacent to the weld bead in the heat affected zone. Further investigation, including optical microscopy, microhardness testing, and residual stress measurements, revealed that the cracks were caused primarily by the presence of coarse untempered martensite in the heat affected zone due to localized heating. The localized heating was caused by high welding heat input or low welding speed and resulted in high transformation stresses. These transformation stresses, working in combination with thermal stresses and constraint conditions, resulted in intergranular brittle fracture.
Book Chapter
Analysis of Distortion and Deformation
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003573
EISBN: 978-1-62708-180-1
... in a precipitation-hardening alloy, with a corresponding loss in strength. It is well known to metallurgists that exposure to cryogenic temperatures may cause cracking in a martensitic steel due to the volume change accompanying the transformation of retained austenite. What may not be as well appreciated...
Abstract
Distortion failure occurs when a structure or component is deformed so that it can no longer support the load it was intended to carry. Every structure has a load limit beyond which it is considered unsafe or unreliable. Estimation of load limits is an important aspect of design and is commonly computed by classical design or limit analysis. This article discusses the common aspects of failure by distortion with suitable examples. Analysis of a distortion failure often must be thorough and rigorous to determine the root cause of failure and to specify proper corrective action. The article summarizes the general process of distortion failure analysis. It also discusses three types of distortion failures that provide useful insights into the problems of analyzing unusual mechanisms of distortion. These include elastic distortion, ratcheting, and inelastic cyclic buckling.
Book Chapter
Analysis of Distortion and Deformation
Available to PurchaseSeries: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006797
EISBN: 978-1-62708-295-2
... in a precipitation-hardening alloy, with a corresponding loss in strength. It is well known to metallurgists that exposure to cryogenic temperatures may cause cracking in a martensitic steel due to the volume change accompanying the transformation of retained austenite. What may not be as well appreciated...
Abstract
Distortion often is observed in the analysis of other types of failures, and consideration of the distortion can be an important part of the analysis. This article first considers that true distortion occurs when it was unexpected and in which the distortion is associated with a functional failure. Then, a more general consideration of distortion in failure analysis is introduced. Several common aspects of failure by distortion are discussed and suitable examples of distortion failures are presented for illustration. The article provides information on methods to compute load limits, errors in the specification of the material, and faulty process and their corrective measures to meet specifications. It discusses the general process of material failure analysis and special types of distortion and deformation failure.
Book Chapter
Broken-Off Bearing Bosses of Scrap Shears
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001203
EISBN: 978-1-62708-235-8
... to the sheet, or else they ran in the sheet material next to the weld. The quality of the welds could not be judged because the opposite fracture pieces to which they adhered had not been sent in. It was concluded that the breakaway of these bosses was at least favored by overheating and hardening...
Abstract
Three bearing bosses from the cover of scrap shears were sent in for examination. They had torn off the base plate to which they had been welded by fillet welds all around. Two of these were examined. They showed entirely the same symptoms. The bosses had broken away on three sides along the welds. The cleaved fractures in the burned notches propagated partially above and partially below several incipient cracks which may have been fatigue fractures. Metallographic sections showed that the fractures had occurred either at the burned notches near the transition from the weld to the sheet, or else they ran in the sheet material next to the weld. The quality of the welds could not be judged because the opposite fracture pieces to which they adhered had not been sent in. It was concluded that the breakaway of these bosses was at least favored by overheating and hardening.
Book Chapter
Problematic Failure Analysis of a Cast Steel Crankshaft
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001597
EISBN: 978-1-62708-236-5
... there are higher concentrations of sulfides surrounded by a higher carbon matrix. These higher carbon regions have higher hardenability than the surrounding core and therefore transformed into martensite during the quench after austenitizing while the surrounding core formed ferrite and pearlite...
Abstract
This case study involves two continuously cast steel crankshaft failures. Three parties performed their own failure analyses: (1) the engine manufacturer responsible for component design, specification, and application; (2) the steel supplier and forging supplier responsible for making the steel, forging the shape, and preliminary heat treatment; and (3) a supplier that provided induction hardening, finish machining, and inspection. An independent engineering firm was subsequently involved, but because each party had its own agenda, there was no agreement on the metallurgical source of the failure and thus no continued analysis to pin down and eliminate the root cause.
1