Skip Nav Destination
Close Modal
Search Results for
transformation curve
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 131 Search Results for
transformation curve
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Problems Associated with Heat Treated Parts
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 18 Cooling paths for (a) martempering, (b) austempering, and (c) time quenching superimposed on the isothermal transformation curve for eutectoid steel
More
Image
Published: 01 January 2002
Fig. 77 Direct quenching from carburizing temperature. (a) Phase diagram schematic. (b) Continuous cooling transformation curve for a high-carbon surface. (c) Micrograph of direct quenched 3% Ni-Cr carburized steel. 280×. Source: Ref 30
More
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003510
EISBN: 978-1-62708-180-1
... temperature and the M s may be determined in order to construct a CCT diagram, such as the one shown for an unalloyed carbon steel (AISI 1045) in Fig. 2 . Continuous cooling transformation curves provide data on the temperatures for each phase transformation, the amount of transformation product obtained...
Abstract
This article provides an overview of the effects of various material- and process-related parameters on residual stress, distortion control, cracking, and microstructure/property relationships as they relate to various types of failure. It discusses phase transformations that occur during heat treating and describes the metallurgical sources of stress and distortion during heating and cooling. The article summarizes the effect of materials and the quench-process design on distortion and cracking and details the effect of cooling characteristics on residual stress and distortion. It also provides information on the methods of minimizing distortion and tempering. The article concludes with a discussion on the effect of heat treatment processes on microstructure/property-related failures.
Image
Published: 01 January 2002
Fig. 66 Comparison of cooling curves as a workpiece cools into and through the martensite transformation range for a conventional quenching and tempering process and for interrupted quenching processes. (a) Conventional quenching and tempering. (b) Marquenching. (c) Modified marquenching. Ae 1
More
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001784
EISBN: 978-1-62708-241-9
... intermediate strength and toughness ( Fig. 3a ). Coarse grains of ferrite are observed indicative of low carbon ferrite phases ( Fig. 3a ). Feathery bainite forms just below the nose of the time temperature transformation curve [ 2 ] at intermediate cooling rates. Microstructure of a similar part of higher...
Abstract
A 13/16-in. hex socket failed while in use. Analysis (hardness testing, optical and scanning electron microscopy, and EDS) revealed that the socket was made of low carbon steel formed in a powder metallurgy process. A number of flaws were found including nonuniform wall thickness, poor geometric design with sharp corners as stress raisers, and incomplete sintering evidenced by unsintered particles. These were determined to be the primary cause of failure, although inclusions on the fracture surface containing S and Al may have played a role as well.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006816
EISBN: 978-1-62708-329-4
... Abstract This article introduces some of the general sources of heat treating problems with particular emphasis on problems caused by the actual heat treating process and the significant thermal and transformation stresses within a heat treated part. It addresses the design and material factors...
Abstract
This article introduces some of the general sources of heat treating problems with particular emphasis on problems caused by the actual heat treating process and the significant thermal and transformation stresses within a heat treated part. It addresses the design and material factors that cause a part to fail during heat treatment. The article discusses the problems associated with heating and furnaces, quenching media, quenching stresses, hardenability, tempering, carburizing, carbonitriding, and nitriding as well as potential stainless steel problems and problems associated with nonferrous heat treatments. The processes involved in cold working of certain ferrous and nonferrous alloys are also covered.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001184
EISBN: 978-1-62708-235-8
... of castings or pouring with curves, for instance, iron rods are used, from which pieces may melt off and fall into the liquid steel. But more probably the metallic inclusions originate in floated base places of carbon-deficient steel, such as are inserted into the mold in casting from the above...
Abstract
Examples of metallic inclusions in steels of various types are presented. The structure of an inclusion in an annealed Fe-1C-1.5Cr steel consisted of ferrite with lamellar pearlite. The carbon content of the inclusion was therefore considerably lower than that of the chromium steel and was adapted to the latter by diffusion only at the periphery of the inclusion. In another section of a hardened piece of the same chromium steel, the steel in this case had a structure of martensite with hypereutectic carbide, while the inclusions consisted of a very fine laminated eutectoid of the lower pearlite range (Troostite). In a pipe of 18-8 austenitic stainless steel a weakly magnetizable spot of limited size was found. This inclusion too was probably more alloy-deficient than the austenitic steel, similar to the ones described above. All three cases were casting defects.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003530
EISBN: 978-1-62708-180-1
.... It also provides information on the applications of fracture mechanics in failure analysis. crack-like imperfection elastic-plastic fracture mechanics failure analysis fracture mechanics linear elastic fracture mechanics stress analysis stress transformation subcritical fracture mechanics...
Abstract
This article describes the underlying fundamentals, applications, the relevance and necessity of performing proper stress analysis in conducting a failure analysis. It presents an introduction to the stress analysis of bodies containing crack-like imperfections and the topic of fracture mechanics. The fracture mechanics approach is an important part of stress analysis at the tips of sharp cracks or discontinuities. The article reviews fracture mechanics concepts, including linear elastic fracture mechanics, elastic-plastic fracture mechanics, and subcritical fracture mechanics. It also provides information on the applications of fracture mechanics in failure analysis.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006767
EISBN: 978-1-62708-295-2
..., and a procedure to deal with stress by determining maximum values through stress transformation is described. The article provides the stress analysis equations of typical component geometries and discusses some of the implications of the stress analysis relative to failure in components. It focuses on linear...
Abstract
This article describes concepts and tools that can be used by the failure analyst to understand and address deformation, cracking, or fracture after a stress-related failure has occurred. Issues related to the determination and use of stress are detailed. Stress is defined, and a procedure to deal with stress by determining maximum values through stress transformation is described. The article provides the stress analysis equations of typical component geometries and discusses some of the implications of the stress analysis relative to failure in components. It focuses on linear elastic fracture mechanics analysis, with some mention of elastic-plastic fracture mechanics analysis. The article describes the probabilistic aspects of fatigue and fracture. Information on crack-growth simulation of the material is also provided.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c9001259
EISBN: 978-1-62708-233-4
... transformation. All samples were case decarburized. The average depths of decarburization of all 30 samples were measured to be: Shipment S 1 S 2 G Depth of fully decarburized zone [mm] 0,05 0,05 0 Total decarburized depth [mm] 0,14 0,12 0,05 Fig. 1 Core structure of the wires...
Abstract
A bolt manufacturer observed that products made from certain shipments of steel 41 Cr4 wire were prone to the formation of quench cracks in their rolled threads. The affected wire was tested and found to be highly sensitive to overheating because of the metallurgical method by which it was produced. A stronger decarburization of the case was a contributing factor that could not be prevented by working because the thread was rolled. Hardening tests conducted by the bolt manufacturer showed that quench cracks did not occur in specimens that were turned down before hardening and when notches were machined instead of beaten with a chisel.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.9781627081801
EISBN: 978-1-62708-180-1
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0006548
EISBN: 978-1-62708-180-1
... temperature at which austenite begins to form on heating Ac3 temperature at which transformation of ferrite to austenite is completed on heating ABS acrylonitrile-butadiene-styrene ACI Alloy Casting Institute AES Auger electron spectroscopy AGMA American Gear Manufacturers Asso- ciation AISI American Iron...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006807
EISBN: 978-1-62708-329-4
... temperatures. The article describes the stages of the creep curve, discusses processes involved in the extrapolation of creep data, and summarizes notable creep constitutive models and continuum damage mechanics models. It demonstrates the effects of stress relaxation and redistribution on the remaining life...
Abstract
This article provides some new developments in elevated-temperature and life assessments. It is aimed at providing an overview of the damage mechanisms of concern, with a focus on creep, and the methodologies for design and in-service assessment of components operating at elevated temperatures. The article describes the stages of the creep curve, discusses processes involved in the extrapolation of creep data, and summarizes notable creep constitutive models and continuum damage mechanics models. It demonstrates the effects of stress relaxation and redistribution on the remaining life and discusses the Monkman-Grant relationship and multiaxiality. The article further provides information on high-temperature metallurgical changes and high-temperature hydrogen attack and the steps involved in the remaining-life prediction of high-temperature components. It presents case studies on heater tube creep testing and remaining-life assessment, and pressure vessel time-dependent stress analysis showing the effect of stress relaxation at hot spots.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001711
EISBN: 978-1-62708-229-7
... + log t f ) - 7.25 Equation 1 , together with creep rupture stress R m in 100,000 hours, lead to the determination of the specific curve creep stress-rupture strenght vs LMP for each steel. Thus, Table 1 shows the values of R m for the three steels considered, 10CrMo9-10...
Abstract
Failures of 10Cr-Mo9-10 and X 20Cr-Mo-V12-1 superheated pipes during service in steam power generation plants are described. Through micrographic and fractographic analysis, creep and overheating were identified as the cause of failure. The Larson-Miller parameter is computed, as a function of oxidation thickness, temperature and time, confirming the creep failure diagnostic.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0090466
EISBN: 978-1-62708-218-1
... the ductility of the molded hinge assemblies. No recommendations were made. Fourier transform infrared analysis Hinges Nylon Thermogravimetric analysis 13% glass-fiber reinforced nylon Brittle fracture A production lot of mechanical hinges had failed during incoming quality-control testing...
Abstract
A production lot of mechanical hinges used in an automotive application had failed during incoming quality-control routine actuation testing. A change in part supplier had taken place between the approval of the prototype parts that performed acceptably and the receipt of the first lot of production parts. The mechanical hinges were specified to be injection molded from an impact-modified, 13% glass-fiber-reinforced nylon 6/6 resin. Investigation of samples representing the failed components and the original prototype parts included visual inspection, 118x SEM images, micro-FTIR, DSC analysis, and TGA. It supported the conclusion that the hinge assemblies failed through brittle fracture associated with stress overload during the actuation of the parts. The failed part material was found to be degraded, most likely occurring during the compounding of the resin or during the actual molding of the parts. While resins for both failed and non-failed parts produced results characteristic of a 13% glass-fiber-reinforced, impact-modified nylon 6/6, the failed part material, contained a significantly lower level of rubber, which rendered the parts less impact resistant and subsequently lowered the ductility of the molded hinge assemblies. No recommendations were made.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001811
EISBN: 978-1-62708-241-9
... is inhomogeneous in terms of chemical composition. Thus, during cooling cycle in the annealing treatment, stresses were developed because of nonhomogeneous transformation of the material. Fig. 2 Schematic after opening of the tube showing the positions at which the XRD analysis was performed Fig. 3...
Abstract
A deformed steel tube was received for failure analysis after buckling during a heat-treat operation. The tube was subjected to various metallurgical tests as well as nondestructive testing to confirm the presence of residual stresses. The microstructure of the tube was found to be homogenous and had no banded structure. However, x-ray diffraction analysis confirmed the presence of up to 6% retained austenite which likely caused the tube to buckle during the 910 °C heat treating procedure.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006924
EISBN: 978-1-62708-395-9
.... 9 Conversion-time curves at cure temperatures below the glass transition temperature for full cure ( T g∞ ), showing the transition from chemical control to diffusion control upon vitrification. T g∞ ~ 120 °C (250 °F). Source: Ref 23 B-Staging and the Time-Temperature-Transformation...
Abstract
This article discusses the most common thermal analysis methods for thermosetting resins. These include differential scanning calorimetry, thermomechanical analysis, thermogravimetric analysis, and dynamic mechanical analysis. The article also discusses the characterization of uncured thermosetting resins as well as the curing process. Then, the techniques to characterize the physical properties of cured thermosets and composites are presented. Several examples of stress-strain curves are shown for thermosets and thermoplastic polymers.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001214
EISBN: 978-1-62708-235-8
... the measured hardness values. The surface hardness is affected by retained austenite formation as had been determined already metallographically, and the core hardness at the flattened points is too high for a surface hardened piece that should have a core of some strain capacity. Fig. 5 Hardness curve...
Abstract
A case-hardened sleeve made of C 15 (Material No. 1.0401) was flattened at two opposing sides and had cracked open at these places, the crack initiating at a face plane. The wall of the sleeve was 9 mm thick, but the flat ends were machined down to 5.5 mm from the outside. The customer had specified a 2 mm case depth and a hardness of at least HRC 55 at a depth of 1.5 mm. An etched cross section of the cracked end showed that the case layer had a depth of 2.3 mm, so that the sleeve was almost through-hardened at the flat ends. While the core material with the full wall thickness had the quench structure of low-carbon steel, the structure of the flattened area consisted of coarse acicular martensite with a small amount of pearlite (quench troostite) and ferrite. Therefore the sleeve was overheated and probably quenched directly from case. To prevent damage, it would have been necessary to have a lower case depth, carburize less deeply, and prevent overheating that causes brittleness and leads also to increased case depth, or else use a fine-grained steel of lower hardenability.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003573
EISBN: 978-1-62708-180-1
... that transformation to 100% martensite was accomplished on all parts), the problem was solved. Example 4: Bending of an Aircraft-Wing Slat Track A curved member called a slat track ( Fig. 10 ), which supported the extendable portion of the leading edge of the wing on a military aircraft, failed by bending...
Abstract
Distortion failure occurs when a structure or component is deformed so that it can no longer support the load it was intended to carry. Every structure has a load limit beyond which it is considered unsafe or unreliable. Estimation of load limits is an important aspect of design and is commonly computed by classical design or limit analysis. This article discusses the common aspects of failure by distortion with suitable examples. Analysis of a distortion failure often must be thorough and rigorous to determine the root cause of failure and to specify proper corrective action. The article summarizes the general process of distortion failure analysis. It also discusses three types of distortion failures that provide useful insights into the problems of analyzing unusual mechanisms of distortion. These include elastic distortion, ratcheting, and inelastic cyclic buckling.
Book Chapter
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006797
EISBN: 978-1-62708-295-2
... to ensure more uniform quenching (so that transformation to 100% martensite was accomplished on all parts), the problem was solved. Example 4: Bending of an Aircraft-Wing Slat Track. A curved member called a slat track ( Fig. 10 ), which supported the extendable portion of the leading edge...
Abstract
Distortion often is observed in the analysis of other types of failures, and consideration of the distortion can be an important part of the analysis. This article first considers that true distortion occurs when it was unexpected and in which the distortion is associated with a functional failure. Then, a more general consideration of distortion in failure analysis is introduced. Several common aspects of failure by distortion are discussed and suitable examples of distortion failures are presented for illustration. The article provides information on methods to compute load limits, errors in the specification of the material, and faulty process and their corrective measures to meet specifications. It discusses the general process of material failure analysis and special types of distortion and deformation failure.
1