1-14 of 14 Search Results for

torch brazing

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047745
EISBN: 978-1-62708-235-8
... alloy and cup, from location between arrows in (b). 350×. Braze metal (region C) appears to be mechanically bonded to oxide layer (region D) on surface of cup (region E). Abstract Abstract A 321 stainless steel radar coolant-system assembly fabricated by torch brazing with AWS type 3A flux...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047756
EISBN: 978-1-62708-235-8
... cracks begun as an intergranular separation and subsequently became transgranular. It was concluded that failure of the tube was caused by excessive alloying between the braze metal and the Waspaloy. Reduced temperatures during torch debrazing or rebrazing were recommended to minimize molten braze metal...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047636
EISBN: 978-1-62708-217-4
... ) then occurred in the tube near the flange. The tube hardness near the fracture was less than 53 HB, representing a condition harder than fully annealed (30 HB) but softer than a T4 temper (65 HB). The flange had been attached to the elbow by torch brazing, using BAlSi-3 filler metal (aluminum alloy 4145...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001478
EISBN: 978-1-62708-220-4
.... They could have conceivably arisen as a result of accidental heating by the flame of the brazing torch. If the temperature had been raised locally to above the lower critical — 730°C the region would harden subsequently due to the rapid cooling which would occur when the flame was removed. The cracks which...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006778
EISBN: 978-1-62708-295-2
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001339
EISBN: 978-1-62708-215-0
... the white residue on the flow-impingement surface of the elbow. Aluminum alloy piping, such as alloy 5083-O, and brazed alloy 3003 aluminum plate-fin heat exchangers are commonly used in hydrocarbon and natural gas processing plants because of their excellent cryogenic and heat-transfer properties...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003509
EISBN: 978-1-62708-180-1
... and nondestructive inspection of welds is also described in Welding, Brazing, and Soldering , Volume 6 of ASM Handbook. Service failures of welds, similar to those of any other structural component, depend on the operating environment and the nature of the applied load and may include failures from...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001817
EISBN: 978-1-62708-180-1
... is sometimes used to provide the proper thermal conductance for effective transfer of heat from gas to liquid or from liquid to liquid. Fins on much of the tubing used in air coolers and hydrogen coolers are applied by soldering, brazing, or resistance welding; thus, the ability of the tube material to accept...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003543
EISBN: 978-1-62708-180-1
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003532
EISBN: 978-1-62708-180-1
... from larger pieces using methods such as core drilling, band- or hacksawing, flame cutting, or similar methods. Flame or torch cutting may be the only recourse in the field. If this is done, the torch-cut area must be well away from the area to be examined, because the heat from this operation severely...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006765
EISBN: 978-1-62708-295-2
... cutting, or similar methods. Flame or torch cutting may be the only recourse in the field. If this is done, the torch-cut area must be well away from the area to be examined, because the heat from this operation severely alters the original microstructure for some distance from the cut. Subsequent cutting...
Book Chapter

Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003548
EISBN: 978-1-62708-180-1
..., are to be avoided, if possible. Crevices should be sealed, preferably by welding or brazing, although putties are sometimes used effectively. Replaceable sections of the more active member should be used at joints, or the corrosion allowance of this section should be increased, or both. Effective insulation can...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006783
EISBN: 978-1-62708-295-2
... is relatively large. Rivets, bolts, and other fasteners should be of a more noble metal than the material to be fastened. Dissimilar-metal crevices, such as at threaded connections, are to be avoided if possible. Crevices should be sealed, preferably by welding or brazing, although putties or nonmetallic...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003524
EISBN: 978-1-62708-180-1